Matches in SemOpenAlex for { <https://semopenalex.org/work/W2968204211> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W2968204211 endingPage "333" @default.
- W2968204211 startingPage "316" @default.
- W2968204211 abstract "Abstract We tested one front‐end data fusion method to combine visible near‐infrared (vis–NIR) and portable X‐ray fluorescence (PXRF) spectra for predicting different soil properties and investigated the contribution of different sensor data. A total of 197 soil samples were collected from 25 Alfisols and Mollisols in south‐central Wisconsin, USA. Soils were analysed in the laboratory for clay, sand, silt content, total carbon (TC), total nitrogen (TN) and pH. Air‐dried soil samples were scanned with vis–NIR and PXRF spectrometers. A principal component analysis (PCA) was applied to each of the vis–NIR and PXRF spectra to extract the first 10 principal components (PCs), which were used in the Cubist model. Five types of input data were compared for constructing the models using a front‐end data fusion approach, including: (a) 10 PCs from vis–NIR spectra, (b) 10 PCs from spectra of PXRF beam 1 (XRF40), (c) 10 PCs from spectra of PXRF beam 2 (XRF10), (d) concatenating 20 PCs from two PXRF spectra (XRF40 + 10), and (e) concatenating 30 PCs from two PXRF spectra and vis–NIR spectra (XRF40 + 10 + NIR). In addition, the performances of the preprocessing methods (four smoothing methods with or without background removal) of PXRF spectra were compared. Multiple linear regression was also used to predict soil properties directly from 11 PXRF‐estimated elements. Our results suggest that smoothing should be applied to the PXRF spectra prior to developing predictive models. PXRF spectra and elemental data can predict soil texture with validation R 2 > 0.85, better than using solely vis–NIR spectra, and combining vis–NIR and PXRF spectra improved the prediction. Combining PXRF and vis–NIR can also predict TC and TN moderately well. Soil pH cannot be predicted from vis–NIR or PXRF spectra in this dataset due to its weak correlations with other soil properties and elements. It is concluded that PXRF spectra can be solely used to estimate soil texture, whereas combining vis–NIR and PXRF spectra via PCA should be used to estimate TC and TN. Highlights The use of front‐end data fusion method to combine vis–NIR and PXRF spectra for predicting soil properties. Different preprocessing algorithms were compared systematically for PXRF spectra. Spectral smoothing should be applied to the PXRF spectra prior to developing predictive models. PXRF spectra can be used solely to estimate soil texture, whereas combining vis–NIR and PXRF spectra via PCA should be used to estimate TC and TN." @default.
- W2968204211 created "2019-08-22" @default.
- W2968204211 creator A5013987545 @default.
- W2968204211 creator A5023636900 @default.
- W2968204211 date "2019-10-04" @default.
- W2968204211 modified "2023-10-14" @default.
- W2968204211 title "Data fusion of vis–NIR and PXRF spectra to predict soil physical and chemical properties" @default.
- W2968204211 cites W1592341820 @default.
- W2968204211 cites W1619233213 @default.
- W2968204211 cites W1642724957 @default.
- W2968204211 cites W1831050183 @default.
- W2968204211 cites W186329053 @default.
- W2968204211 cites W1970180719 @default.
- W2968204211 cites W1971366864 @default.
- W2968204211 cites W1979539465 @default.
- W2968204211 cites W1986948870 @default.
- W2968204211 cites W1987479467 @default.
- W2968204211 cites W1998043318 @default.
- W2968204211 cites W1998053851 @default.
- W2968204211 cites W2008140749 @default.
- W2968204211 cites W2037655782 @default.
- W2968204211 cites W2046496352 @default.
- W2968204211 cites W2052903566 @default.
- W2968204211 cites W2054325787 @default.
- W2968204211 cites W2068431090 @default.
- W2968204211 cites W2073858026 @default.
- W2968204211 cites W2075140015 @default.
- W2968204211 cites W2080545724 @default.
- W2968204211 cites W2109606373 @default.
- W2968204211 cites W2165993842 @default.
- W2968204211 cites W2261067204 @default.
- W2968204211 cites W2298139521 @default.
- W2968204211 cites W2410552594 @default.
- W2968204211 cites W2425993113 @default.
- W2968204211 cites W2555044512 @default.
- W2968204211 cites W2602228915 @default.
- W2968204211 cites W2885633929 @default.
- W2968204211 cites W2888610957 @default.
- W2968204211 cites W2906969323 @default.
- W2968204211 cites W2907723281 @default.
- W2968204211 cites W2912648180 @default.
- W2968204211 cites W2912836164 @default.
- W2968204211 cites W2955980286 @default.
- W2968204211 cites W40397213 @default.
- W2968204211 cites W4253819046 @default.
- W2968204211 cites W97377992 @default.
- W2968204211 doi "https://doi.org/10.1111/ejss.12875" @default.
- W2968204211 hasPublicationYear "2019" @default.
- W2968204211 type Work @default.
- W2968204211 sameAs 2968204211 @default.
- W2968204211 citedByCount "54" @default.
- W2968204211 countsByYear W29682042112020 @default.
- W2968204211 countsByYear W29682042112021 @default.
- W2968204211 countsByYear W29682042112022 @default.
- W2968204211 countsByYear W29682042112023 @default.
- W2968204211 crossrefType "journal-article" @default.
- W2968204211 hasAuthorship W2968204211A5013987545 @default.
- W2968204211 hasAuthorship W2968204211A5023636900 @default.
- W2968204211 hasConcept C121332964 @default.
- W2968204211 hasConcept C1276947 @default.
- W2968204211 hasConcept C159390177 @default.
- W2968204211 hasConcept C159750122 @default.
- W2968204211 hasConcept C175963888 @default.
- W2968204211 hasConcept C39432304 @default.
- W2968204211 hasConcept C4839761 @default.
- W2968204211 hasConceptScore W2968204211C121332964 @default.
- W2968204211 hasConceptScore W2968204211C1276947 @default.
- W2968204211 hasConceptScore W2968204211C159390177 @default.
- W2968204211 hasConceptScore W2968204211C159750122 @default.
- W2968204211 hasConceptScore W2968204211C175963888 @default.
- W2968204211 hasConceptScore W2968204211C39432304 @default.
- W2968204211 hasConceptScore W2968204211C4839761 @default.
- W2968204211 hasIssue "3" @default.
- W2968204211 hasLocation W29682042111 @default.
- W2968204211 hasOpenAccess W2968204211 @default.
- W2968204211 hasPrimaryLocation W29682042111 @default.
- W2968204211 hasRelatedWork W1970138629 @default.
- W2968204211 hasRelatedWork W1979057328 @default.
- W2968204211 hasRelatedWork W2080630926 @default.
- W2968204211 hasRelatedWork W2276707328 @default.
- W2968204211 hasRelatedWork W2911389670 @default.
- W2968204211 hasRelatedWork W3006550963 @default.
- W2968204211 hasRelatedWork W4214574149 @default.
- W2968204211 hasRelatedWork W4220662123 @default.
- W2968204211 hasRelatedWork W4297494291 @default.
- W2968204211 hasRelatedWork W2310924390 @default.
- W2968204211 hasVolume "71" @default.
- W2968204211 isParatext "false" @default.
- W2968204211 isRetracted "false" @default.
- W2968204211 magId "2968204211" @default.
- W2968204211 workType "article" @default.