Matches in SemOpenAlex for { <https://semopenalex.org/work/W2968227854> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W2968227854 endingPage "29" @default.
- W2968227854 startingPage "19" @default.
- W2968227854 abstract "In recent years, Fires and explosion in coal mines imposes number of life threats for mine workers along with a rapid increase in environmental air pollution. By using various risk assessment methodologies, coal miners can easily predict the potential risks of forthcoming hazards in advance. In this work, a novel approach is proposed for monitoring the fire-resistant hydraulic fluids (HFA) contamination level. Fire resistance property of HFA fluids varies with the viscosity. Water content. By monitoring the water content in HFA fluids, fire resistance can be easily predicted. Fire resistance hydraulic fluid properties are trained in Ensemble Boosted Regression Tree (EBRT) to predict the potential risk in coal mines. EBRT is the supervised training algorithm which is proposed for leveraging an efficacious coal mine monitoring into existence. EBRT model estimates stronger prediction by linearly integrating the weaker estimations. Threshold rule-based decision making is adopted for the effective mitigation of risks. EBRT is optimized to minimize the cross-validation loss. Furthermore, Bayesian optimizer is used to minimize the objective function to 7.81 with regularized parameter lambda is chosen as 0.34 to minimize the ensemble trees. The root Mean square error is optimized to 31.68." @default.
- W2968227854 created "2019-08-22" @default.
- W2968227854 creator A5028080019 @default.
- W2968227854 creator A5042383078 @default.
- W2968227854 creator A5069465172 @default.
- W2968227854 date "2019-08-13" @default.
- W2968227854 modified "2023-09-23" @default.
- W2968227854 title "Condition Monitoring of Coal Mine Using Ensemble Boosted Tree Regression Model" @default.
- W2968227854 cites W2016333194 @default.
- W2968227854 cites W2020410328 @default.
- W2968227854 cites W2022629116 @default.
- W2968227854 cites W2029062761 @default.
- W2968227854 cites W2032862034 @default.
- W2968227854 cites W2045278678 @default.
- W2968227854 cites W2048946738 @default.
- W2968227854 cites W2078378570 @default.
- W2968227854 cites W2088794999 @default.
- W2968227854 cites W2209856660 @default.
- W2968227854 cites W2494313800 @default.
- W2968227854 cites W2505981723 @default.
- W2968227854 cites W2567460033 @default.
- W2968227854 cites W2617341574 @default.
- W2968227854 cites W2759266232 @default.
- W2968227854 cites W2768800360 @default.
- W2968227854 cites W2791286838 @default.
- W2968227854 cites W3099723433 @default.
- W2968227854 cites W4231567025 @default.
- W2968227854 doi "https://doi.org/10.1007/978-3-030-28364-3_2" @default.
- W2968227854 hasPublicationYear "2019" @default.
- W2968227854 type Work @default.
- W2968227854 sameAs 2968227854 @default.
- W2968227854 citedByCount "1" @default.
- W2968227854 countsByYear W29682278542023 @default.
- W2968227854 crossrefType "book-chapter" @default.
- W2968227854 hasAuthorship W2968227854A5028080019 @default.
- W2968227854 hasAuthorship W2968227854A5042383078 @default.
- W2968227854 hasAuthorship W2968227854A5069465172 @default.
- W2968227854 hasConcept C105795698 @default.
- W2968227854 hasConcept C113174947 @default.
- W2968227854 hasConcept C134306372 @default.
- W2968227854 hasConcept C151956035 @default.
- W2968227854 hasConcept C152877465 @default.
- W2968227854 hasConcept C33923547 @default.
- W2968227854 hasConcept C39432304 @default.
- W2968227854 hasConcept C61722155 @default.
- W2968227854 hasConcept C83546350 @default.
- W2968227854 hasConceptScore W2968227854C105795698 @default.
- W2968227854 hasConceptScore W2968227854C113174947 @default.
- W2968227854 hasConceptScore W2968227854C134306372 @default.
- W2968227854 hasConceptScore W2968227854C151956035 @default.
- W2968227854 hasConceptScore W2968227854C152877465 @default.
- W2968227854 hasConceptScore W2968227854C33923547 @default.
- W2968227854 hasConceptScore W2968227854C39432304 @default.
- W2968227854 hasConceptScore W2968227854C61722155 @default.
- W2968227854 hasConceptScore W2968227854C83546350 @default.
- W2968227854 hasLocation W29682278541 @default.
- W2968227854 hasOpenAccess W2968227854 @default.
- W2968227854 hasPrimaryLocation W29682278541 @default.
- W2968227854 hasRelatedWork W1503303035 @default.
- W2968227854 hasRelatedWork W1980588930 @default.
- W2968227854 hasRelatedWork W2060912888 @default.
- W2968227854 hasRelatedWork W2062105804 @default.
- W2968227854 hasRelatedWork W2080727847 @default.
- W2968227854 hasRelatedWork W2119696881 @default.
- W2968227854 hasRelatedWork W2374407646 @default.
- W2968227854 hasRelatedWork W2375721435 @default.
- W2968227854 hasRelatedWork W4290879003 @default.
- W2968227854 hasRelatedWork W2738033194 @default.
- W2968227854 isParatext "false" @default.
- W2968227854 isRetracted "false" @default.
- W2968227854 magId "2968227854" @default.
- W2968227854 workType "book-chapter" @default.