Matches in SemOpenAlex for { <https://semopenalex.org/work/W2968237131> ?p ?o ?g. }
- W2968237131 endingPage "133763" @default.
- W2968237131 startingPage "133763" @default.
- W2968237131 abstract "Accurate water table depth mapping is important for water management and activity planning. The joint use of exhausted geospatial raster data with sparse field measurements could improve predictions. The aim of this work was to fuse different support data, collected with remote sensors, with point soil field observations to improve water table depth prediction. A method for multi-source data fusion is described in detail, based on multivariate geostatistics and exemplified with a case study in a conservation area of 5700 ha in the state of São Paulo, Brazil. TanDEM-X digital surface model with 90 m resolution and SAFER (Simple Algorithm for Evapotranspiration Retrieving) data calculated from Sentinel-2 images with 20 m resolution, were jointly used with water table depth and soil physical variables measured at 56 locations to predict water table depth in two hydrological years (2015–16 and 2016–17). Data were transformed to normal distributions using the Gaussian anamorphosis approach. A Linear Model of Coregionalization (LMC), calculated for all direct and cross-variograms of the eleven variables of study, was regularized at block support for multi-collocated block cokriging predictions. Support change correction was made to reduce punctual variance to block variances. Univariate and multivariate geostatistical interpolation methods were compared through cross validation. The uncertainty associated to the water table depths estimated by multivariate approach was lower than those by the univariate approach. Moreover, multivariate predictions incorporated the influences induced by local relief, vegetation and soil properties. Confidence interval maps, presented as uncertainty measure, reveal areas with higher and lower precision of groundwater level prediction that could be effectively used as support in land use management." @default.
- W2968237131 created "2019-08-22" @default.
- W2968237131 creator A5018202262 @default.
- W2968237131 creator A5077404518 @default.
- W2968237131 date "2019-12-01" @default.
- W2968237131 modified "2023-10-12" @default.
- W2968237131 title "A geostatistical approach for multi-source data fusion to predict water table depth" @default.
- W2968237131 cites W180836830 @default.
- W2968237131 cites W1900771449 @default.
- W2968237131 cites W2001881917 @default.
- W2968237131 cites W2008575896 @default.
- W2968237131 cites W2011633866 @default.
- W2968237131 cites W2014116727 @default.
- W2968237131 cites W2020651722 @default.
- W2968237131 cites W2023021707 @default.
- W2968237131 cites W2024697317 @default.
- W2968237131 cites W2058391095 @default.
- W2968237131 cites W2058860308 @default.
- W2968237131 cites W2080539185 @default.
- W2968237131 cites W2083248507 @default.
- W2968237131 cites W2086092868 @default.
- W2968237131 cites W2088052330 @default.
- W2968237131 cites W2104794450 @default.
- W2968237131 cites W2116522204 @default.
- W2968237131 cites W2118178555 @default.
- W2968237131 cites W2134342741 @default.
- W2968237131 cites W2141048975 @default.
- W2968237131 cites W2143550439 @default.
- W2968237131 cites W2150509167 @default.
- W2968237131 cites W2164397352 @default.
- W2968237131 cites W2167711599 @default.
- W2968237131 cites W2396871564 @default.
- W2968237131 cites W2536760076 @default.
- W2968237131 cites W2591569933 @default.
- W2968237131 cites W2621319267 @default.
- W2968237131 cites W2788285248 @default.
- W2968237131 cites W2800794224 @default.
- W2968237131 cites W2884792085 @default.
- W2968237131 cites W2900737800 @default.
- W2968237131 cites W2908425029 @default.
- W2968237131 cites W313073531 @default.
- W2968237131 cites W904823 @default.
- W2968237131 doi "https://doi.org/10.1016/j.scitotenv.2019.133763" @default.
- W2968237131 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31442721" @default.
- W2968237131 hasPublicationYear "2019" @default.
- W2968237131 type Work @default.
- W2968237131 sameAs 2968237131 @default.
- W2968237131 citedByCount "22" @default.
- W2968237131 countsByYear W29682371312020 @default.
- W2968237131 countsByYear W29682371312021 @default.
- W2968237131 countsByYear W29682371312022 @default.
- W2968237131 countsByYear W29682371312023 @default.
- W2968237131 crossrefType "journal-article" @default.
- W2968237131 hasAuthorship W2968237131A5018202262 @default.
- W2968237131 hasAuthorship W2968237131A5077404518 @default.
- W2968237131 hasConcept C104114177 @default.
- W2968237131 hasConcept C105795698 @default.
- W2968237131 hasConcept C125572338 @default.
- W2968237131 hasConcept C127313418 @default.
- W2968237131 hasConcept C137800194 @default.
- W2968237131 hasConcept C154945302 @default.
- W2968237131 hasConcept C161584116 @default.
- W2968237131 hasConcept C187320778 @default.
- W2968237131 hasConcept C199163554 @default.
- W2968237131 hasConcept C33923547 @default.
- W2968237131 hasConcept C39432304 @default.
- W2968237131 hasConcept C39769621 @default.
- W2968237131 hasConcept C41008148 @default.
- W2968237131 hasConcept C62649853 @default.
- W2968237131 hasConcept C76177295 @default.
- W2968237131 hasConcept C76886044 @default.
- W2968237131 hasConcept C81692654 @default.
- W2968237131 hasConcept C94747663 @default.
- W2968237131 hasConceptScore W2968237131C104114177 @default.
- W2968237131 hasConceptScore W2968237131C105795698 @default.
- W2968237131 hasConceptScore W2968237131C125572338 @default.
- W2968237131 hasConceptScore W2968237131C127313418 @default.
- W2968237131 hasConceptScore W2968237131C137800194 @default.
- W2968237131 hasConceptScore W2968237131C154945302 @default.
- W2968237131 hasConceptScore W2968237131C161584116 @default.
- W2968237131 hasConceptScore W2968237131C187320778 @default.
- W2968237131 hasConceptScore W2968237131C199163554 @default.
- W2968237131 hasConceptScore W2968237131C33923547 @default.
- W2968237131 hasConceptScore W2968237131C39432304 @default.
- W2968237131 hasConceptScore W2968237131C39769621 @default.
- W2968237131 hasConceptScore W2968237131C41008148 @default.
- W2968237131 hasConceptScore W2968237131C62649853 @default.
- W2968237131 hasConceptScore W2968237131C76177295 @default.
- W2968237131 hasConceptScore W2968237131C76886044 @default.
- W2968237131 hasConceptScore W2968237131C81692654 @default.
- W2968237131 hasConceptScore W2968237131C94747663 @default.
- W2968237131 hasFunder F4320320997 @default.
- W2968237131 hasFunder F4320325879 @default.
- W2968237131 hasLocation W29682371311 @default.
- W2968237131 hasLocation W29682371312 @default.
- W2968237131 hasOpenAccess W2968237131 @default.
- W2968237131 hasPrimaryLocation W29682371311 @default.
- W2968237131 hasRelatedWork W1237904361 @default.