Matches in SemOpenAlex for { <https://semopenalex.org/work/W2968271654> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W2968271654 abstract "The heart’s energy demand per gram of tissue is the body’s highest and creatine kinase (CK) metabolism, its primary energy reserve, is compromised in common heart diseases. Here, neural-network analysis is used to test whether noninvasive phosphorus (31P) cardiovascular magnetic resonance spectroscopy (CMRS) measurements of cardiac adenosine triphosphate (ATP) energy, phosphocreatine (PCr), the first-order CK reaction rate kf, and the rate of ATP synthesis through CK (CK flux), can predict specific human heart disease and clinical severity. The data comprised the extant 178 complete sets of PCr and ATP concentrations, kf, and CK flux data from human CMRS studies performed on clinical 1.5 and 3 Tesla scanners. Healthy subjects and patients with nonischemic cardiomyopathy, dilated (DCM) or hypertrophic disease, New York Heart Association (NYHA) class I-IV heart failure (HF), or with anterior myocardial infarction are included. Three-layer neural-networks were created to classify disease and to differentiate DCM, hypertrophy and clinical NYHA class in HF patients using leave-one-out training. Network performance was assessed using ‘confusion matrices’ and ‘area-under-the-curve’ (AUC) analyses of ‘receiver operating curves’. Possible methodological bias and network imbalance were tested by segregating 1.5 and 3 Tesla data, and by data augmentation by random interpolation of nearest neighbors, respectively. The network differentiated healthy, HF and non-HF cardiac disease with an overall accuracy of 84% and AUC > 90% for each category using the four CK metabolic parameters, alone. HF patients with DCM, hypertrophy, and different NYHA severity were differentiated with ~ 80% overall accuracy independent of CMRS methodology. While sample-size was limited in some sub-classes, a neural network classifier applied to noninvasive cardiac 31P CMRS data, could serve as a metabolic biomarker for common disease types and HF severity with clinically-relevant accuracy. Moreover, the network’s ability to individually classify disease and HF severity using CK metabolism alone, implies an intimate relationship between CK metabolism and disease, with subtle underlying phenotypic differences that enable their differentiation. ClinicalTrials.gov Identifier: NCT00181259." @default.
- W2968271654 created "2019-08-22" @default.
- W2968271654 creator A5010653447 @default.
- W2968271654 creator A5011319155 @default.
- W2968271654 creator A5044682010 @default.
- W2968271654 date "2019-08-12" @default.
- W2968271654 modified "2023-09-24" @default.
- W2968271654 title "Neural-network classification of cardiac disease from 31P cardiovascular magnetic resonance spectroscopy measures of creatine kinase energy metabolism" @default.
- W2968271654 cites W1520848131 @default.
- W2968271654 cites W1973158590 @default.
- W2968271654 cites W1974395224 @default.
- W2968271654 cites W1975792971 @default.
- W2968271654 cites W1988753771 @default.
- W2968271654 cites W1997997206 @default.
- W2968271654 cites W2003409824 @default.
- W2968271654 cites W2017940848 @default.
- W2968271654 cites W2025542744 @default.
- W2968271654 cites W2058918762 @default.
- W2968271654 cites W2066388079 @default.
- W2968271654 cites W2078711762 @default.
- W2968271654 cites W2080577107 @default.
- W2968271654 cites W2081133653 @default.
- W2968271654 cites W2086619682 @default.
- W2968271654 cites W2090118411 @default.
- W2968271654 cites W2102780353 @default.
- W2968271654 cites W2107567775 @default.
- W2968271654 cites W2111571221 @default.
- W2968271654 cites W2114346250 @default.
- W2968271654 cites W2132759468 @default.
- W2968271654 cites W2139140534 @default.
- W2968271654 cites W2139569350 @default.
- W2968271654 cites W2148143831 @default.
- W2968271654 cites W2153819921 @default.
- W2968271654 cites W2158013993 @default.
- W2968271654 cites W2168118523 @default.
- W2968271654 cites W2520049307 @default.
- W2968271654 cites W2903105253 @default.
- W2968271654 doi "https://doi.org/10.1186/s12968-019-0560-5" @default.
- W2968271654 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6689869" @default.
- W2968271654 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31401975" @default.
- W2968271654 hasPublicationYear "2019" @default.
- W2968271654 type Work @default.
- W2968271654 sameAs 2968271654 @default.
- W2968271654 citedByCount "6" @default.
- W2968271654 countsByYear W29682716542021 @default.
- W2968271654 countsByYear W29682716542022 @default.
- W2968271654 countsByYear W29682716542023 @default.
- W2968271654 crossrefType "journal-article" @default.
- W2968271654 hasAuthorship W2968271654A5010653447 @default.
- W2968271654 hasAuthorship W2968271654A5011319155 @default.
- W2968271654 hasAuthorship W2968271654A5044682010 @default.
- W2968271654 hasBestOaLocation W29682716541 @default.
- W2968271654 hasConcept C126322002 @default.
- W2968271654 hasConcept C164705383 @default.
- W2968271654 hasConcept C2776002628 @default.
- W2968271654 hasConcept C2778198053 @default.
- W2968271654 hasConcept C2778626300 @default.
- W2968271654 hasConcept C2778797674 @default.
- W2968271654 hasConcept C2779896295 @default.
- W2968271654 hasConcept C2780074459 @default.
- W2968271654 hasConcept C2986317502 @default.
- W2968271654 hasConcept C36880943 @default.
- W2968271654 hasConcept C500558357 @default.
- W2968271654 hasConcept C71924100 @default.
- W2968271654 hasConcept C84393581 @default.
- W2968271654 hasConceptScore W2968271654C126322002 @default.
- W2968271654 hasConceptScore W2968271654C164705383 @default.
- W2968271654 hasConceptScore W2968271654C2776002628 @default.
- W2968271654 hasConceptScore W2968271654C2778198053 @default.
- W2968271654 hasConceptScore W2968271654C2778626300 @default.
- W2968271654 hasConceptScore W2968271654C2778797674 @default.
- W2968271654 hasConceptScore W2968271654C2779896295 @default.
- W2968271654 hasConceptScore W2968271654C2780074459 @default.
- W2968271654 hasConceptScore W2968271654C2986317502 @default.
- W2968271654 hasConceptScore W2968271654C36880943 @default.
- W2968271654 hasConceptScore W2968271654C500558357 @default.
- W2968271654 hasConceptScore W2968271654C71924100 @default.
- W2968271654 hasConceptScore W2968271654C84393581 @default.
- W2968271654 hasIssue "1" @default.
- W2968271654 hasLocation W29682716541 @default.
- W2968271654 hasLocation W29682716542 @default.
- W2968271654 hasLocation W29682716543 @default.
- W2968271654 hasLocation W29682716544 @default.
- W2968271654 hasOpenAccess W2968271654 @default.
- W2968271654 hasPrimaryLocation W29682716541 @default.
- W2968271654 hasRelatedWork W134869390 @default.
- W2968271654 hasRelatedWork W1965120787 @default.
- W2968271654 hasRelatedWork W2023446905 @default.
- W2968271654 hasRelatedWork W2039872006 @default.
- W2968271654 hasRelatedWork W2044490050 @default.
- W2968271654 hasRelatedWork W2090118411 @default.
- W2968271654 hasRelatedWork W2111571221 @default.
- W2968271654 hasRelatedWork W2127666157 @default.
- W2968271654 hasRelatedWork W2158491319 @default.
- W2968271654 hasRelatedWork W74220476 @default.
- W2968271654 hasVolume "21" @default.
- W2968271654 isParatext "false" @default.
- W2968271654 isRetracted "false" @default.
- W2968271654 magId "2968271654" @default.
- W2968271654 workType "article" @default.