Matches in SemOpenAlex for { <https://semopenalex.org/work/W2968285462> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W2968285462 abstract "We introduce the use of liaison addition to the study of hyperplane arrangements. For an arrangement, $mathcal A$, of hyperplanes in $mathbb P^n$, $mathcal A$ is free if $R/J$ is Cohen-Macaulay, where $J$ is the Jacobian ideal of $mathcal A$. Terao's conjecture says that freeness of $mathcal A$ is determined by the combinatorics of the intersection lattice of $mathcal A$. We study the Cohen-Macaulayness of three other ideals, all unmixed, that are closely related to $mathcal A$. Let $overline J = mathfrak q_1 cap dots cap mathfrak q_s$ be the intersection of height two primary components of $J$ and $sqrt{J} = mathfrak p_1 cap dots cap mathfrak p_s$ be the radical of $J$. Our third ideal is $mathfrak p_1^{b_1} cap dots cap mathfrak p_s^{b_s}$ for suitable $b_1,dots, b_s$. With a mild hypothesis we use liaison addition to show that all of these ideals are Cohen-Macaulay. When our hypothesis does not hold, we show that these ideals are not necessarily Cohen-Macaulay, and that Cohen-Macaulayness of any of these ideals does not imply Cohen-Macaulayness of any of the others. While we do not study the freeness of $mathcal A$, we show by example that the Betti diagrams can vary even for arrangements with the same combinatorics. We then study the situation when the hypothesis does not hold. For equidimensional curves in $mathbb P^3$, the Hartshorne-Rao module from liaison theory measures the failure of an ideal to be Cohen-Macaulay, degree by degree, and also determines the even liaison class of such a curve. We show that for any positive integer $r$ there is an arrangement $mathcal A$ for which $R/overline J$ fails to be Cohen-Macaulay in only one degree, and this failure is by $r$; we also give an analogous result for $sqrt{J}$. We draw consequences for the corresponding even liaison class of the curve defined by $overline J$ or by $sqrt{J}$." @default.
- W2968285462 created "2019-08-22" @default.
- W2968285462 creator A5008482652 @default.
- W2968285462 creator A5019884106 @default.
- W2968285462 creator A5090497271 @default.
- W2968285462 date "2019-08-11" @default.
- W2968285462 modified "2023-10-18" @default.
- W2968285462 title "Schemes supported on the singular locus of a hyperplane arrangement in $mathbb P^n$" @default.
- W2968285462 cites W1501748882 @default.
- W2968285462 cites W152590714 @default.
- W2968285462 cites W168652684 @default.
- W2968285462 cites W2024674837 @default.
- W2968285462 cites W2044876299 @default.
- W2968285462 cites W2075599051 @default.
- W2968285462 cites W2080294451 @default.
- W2968285462 cites W2082556448 @default.
- W2968285462 cites W2087201939 @default.
- W2968285462 cites W2135507628 @default.
- W2968285462 cites W2892150199 @default.
- W2968285462 cites W377884864 @default.
- W2968285462 cites W71831445 @default.
- W2968285462 doi "https://doi.org/10.48550/arxiv.1908.03939" @default.
- W2968285462 hasPublicationYear "2019" @default.
- W2968285462 type Work @default.
- W2968285462 sameAs 2968285462 @default.
- W2968285462 citedByCount "1" @default.
- W2968285462 countsByYear W29682854622019 @default.
- W2968285462 crossrefType "posted-content" @default.
- W2968285462 hasAuthorship W2968285462A5008482652 @default.
- W2968285462 hasAuthorship W2968285462A5019884106 @default.
- W2968285462 hasAuthorship W2968285462A5090497271 @default.
- W2968285462 hasBestOaLocation W29682854621 @default.
- W2968285462 hasConcept C111472728 @default.
- W2968285462 hasConcept C114614502 @default.
- W2968285462 hasConcept C121332964 @default.
- W2968285462 hasConcept C127413603 @default.
- W2968285462 hasConcept C138885662 @default.
- W2968285462 hasConcept C146978453 @default.
- W2968285462 hasConcept C24890656 @default.
- W2968285462 hasConcept C2776639384 @default.
- W2968285462 hasConcept C2780990831 @default.
- W2968285462 hasConcept C2781204021 @default.
- W2968285462 hasConcept C33923547 @default.
- W2968285462 hasConcept C37253 @default.
- W2968285462 hasConcept C64543145 @default.
- W2968285462 hasConcept C68693459 @default.
- W2968285462 hasConceptScore W2968285462C111472728 @default.
- W2968285462 hasConceptScore W2968285462C114614502 @default.
- W2968285462 hasConceptScore W2968285462C121332964 @default.
- W2968285462 hasConceptScore W2968285462C127413603 @default.
- W2968285462 hasConceptScore W2968285462C138885662 @default.
- W2968285462 hasConceptScore W2968285462C146978453 @default.
- W2968285462 hasConceptScore W2968285462C24890656 @default.
- W2968285462 hasConceptScore W2968285462C2776639384 @default.
- W2968285462 hasConceptScore W2968285462C2780990831 @default.
- W2968285462 hasConceptScore W2968285462C2781204021 @default.
- W2968285462 hasConceptScore W2968285462C33923547 @default.
- W2968285462 hasConceptScore W2968285462C37253 @default.
- W2968285462 hasConceptScore W2968285462C64543145 @default.
- W2968285462 hasConceptScore W2968285462C68693459 @default.
- W2968285462 hasLocation W29682854621 @default.
- W2968285462 hasOpenAccess W2968285462 @default.
- W2968285462 hasPrimaryLocation W29682854621 @default.
- W2968285462 hasRelatedWork W1633079080 @default.
- W2968285462 hasRelatedWork W2054751496 @default.
- W2968285462 hasRelatedWork W2059836616 @default.
- W2968285462 hasRelatedWork W2253492760 @default.
- W2968285462 hasRelatedWork W2583206876 @default.
- W2968285462 hasRelatedWork W2767298469 @default.
- W2968285462 hasRelatedWork W2949304013 @default.
- W2968285462 hasRelatedWork W2963979736 @default.
- W2968285462 hasRelatedWork W2998961919 @default.
- W2968285462 hasRelatedWork W4290691827 @default.
- W2968285462 isParatext "false" @default.
- W2968285462 isRetracted "false" @default.
- W2968285462 magId "2968285462" @default.
- W2968285462 workType "article" @default.