Matches in SemOpenAlex for { <https://semopenalex.org/work/W2968309075> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W2968309075 endingPage "101590" @default.
- W2968309075 startingPage "101590" @default.
- W2968309075 abstract "Abstract Today, most organizations employ cloud computing environments for both computational reasons and for storing their critical files and data. Virtual servers are an example of widely used virtual resources provided by cloud computing architecture. Therefore, virtual servers are considered an attractive target for cyber-attackers, who launch their attacks by malware such as the well-known remote access trojans (RATs) and more modern malware such as ransomware and cryptojacking. Existing security solutions implemented on virtual servers fail to detect these newly created malware (zero-day attacks). In fact, by the time the security solution is updated, the organization has likely already been attacked. In this study, we present a designated framework aimed at trusted and secured detection of newly created and unknown instances of malware on virtual machines in an organization's private cloud. We took volatile memory dumps from a virtual machine (VM) in a secured and trusted manner, and analyzed all of the data within the memory dumps using the MinHash method; MinHash is well suited for the accurate detection of malware in VMs based on efficient volatile memory dump comparisons. The proposed framework is evaluated in a comprehensive set of experiments of increasing difficulty in which we also measured the detection performance of different classifiers (both similarity and machine learning-based classifiers, using collections of real-world, professional, notorious malware and legitimate applications. The evaluation results show that our framework can detect the anomalous state of a virtual server, as well as known, new, and unknown malware, with very high TPRs (100% for ransomware and RATs) and very low FPRs (1.8% for ransomware and no FPR for RATs). We also show how the methodology's performance can be improved, in terms of required time and storage space, saving more than 86% of these resources. Finally, we demonstrate the generalization capabilities and practicality of our methodology by using transfer learning and learning from just one virtual server in order to detect unknown malware on a different virtual server." @default.
- W2968309075 created "2019-08-22" @default.
- W2968309075 creator A5006355294 @default.
- W2968309075 creator A5012622155 @default.
- W2968309075 creator A5022285610 @default.
- W2968309075 creator A5035352952 @default.
- W2968309075 creator A5072913672 @default.
- W2968309075 date "2019-11-01" @default.
- W2968309075 modified "2023-09-24" @default.
- W2968309075 title "Volatile memory analysis using the MinHash method for efficient and secured detection of malware in private cloud" @default.
- W2968309075 cites W2076417350 @default.
- W2968309075 cites W2154316946 @default.
- W2968309075 cites W2261775381 @default.
- W2968309075 cites W2280263187 @default.
- W2968309075 cites W2342877402 @default.
- W2968309075 cites W2344060479 @default.
- W2968309075 cites W2463535935 @default.
- W2968309075 cites W2471456063 @default.
- W2968309075 cites W2792599578 @default.
- W2968309075 cites W2800557391 @default.
- W2968309075 cites W2805346584 @default.
- W2968309075 cites W2891394615 @default.
- W2968309075 cites W2998066361 @default.
- W2968309075 doi "https://doi.org/10.1016/j.cose.2019.101590" @default.
- W2968309075 hasPublicationYear "2019" @default.
- W2968309075 type Work @default.
- W2968309075 sameAs 2968309075 @default.
- W2968309075 citedByCount "18" @default.
- W2968309075 countsByYear W29683090752020 @default.
- W2968309075 countsByYear W29683090752021 @default.
- W2968309075 countsByYear W29683090752022 @default.
- W2968309075 countsByYear W29683090752023 @default.
- W2968309075 crossrefType "journal-article" @default.
- W2968309075 hasAuthorship W2968309075A5006355294 @default.
- W2968309075 hasAuthorship W2968309075A5012622155 @default.
- W2968309075 hasAuthorship W2968309075A5022285610 @default.
- W2968309075 hasAuthorship W2968309075A5035352952 @default.
- W2968309075 hasAuthorship W2968309075A5072913672 @default.
- W2968309075 hasConcept C111919701 @default.
- W2968309075 hasConcept C38652104 @default.
- W2968309075 hasConcept C41008148 @default.
- W2968309075 hasConcept C541664917 @default.
- W2968309075 hasConcept C79974875 @default.
- W2968309075 hasConceptScore W2968309075C111919701 @default.
- W2968309075 hasConceptScore W2968309075C38652104 @default.
- W2968309075 hasConceptScore W2968309075C41008148 @default.
- W2968309075 hasConceptScore W2968309075C541664917 @default.
- W2968309075 hasConceptScore W2968309075C79974875 @default.
- W2968309075 hasFunder F4320306994 @default.
- W2968309075 hasFunder F4320324890 @default.
- W2968309075 hasLocation W29683090751 @default.
- W2968309075 hasOpenAccess W2968309075 @default.
- W2968309075 hasPrimaryLocation W29683090751 @default.
- W2968309075 hasRelatedWork W1968675450 @default.
- W2968309075 hasRelatedWork W2113638848 @default.
- W2968309075 hasRelatedWork W2544489161 @default.
- W2968309075 hasRelatedWork W2567685376 @default.
- W2968309075 hasRelatedWork W2587865370 @default.
- W2968309075 hasRelatedWork W2802118555 @default.
- W2968309075 hasRelatedWork W2808524294 @default.
- W2968309075 hasRelatedWork W2891403344 @default.
- W2968309075 hasRelatedWork W3181161485 @default.
- W2968309075 hasRelatedWork W4293770584 @default.
- W2968309075 hasVolume "87" @default.
- W2968309075 isParatext "false" @default.
- W2968309075 isRetracted "false" @default.
- W2968309075 magId "2968309075" @default.
- W2968309075 workType "article" @default.