Matches in SemOpenAlex for { <https://semopenalex.org/work/W2968339610> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W2968339610 endingPage "325" @default.
- W2968339610 startingPage "311" @default.
- W2968339610 abstract "The intrinsic capability of functional link artificial neural network (FLANN) to recognize the complex nonlinear relationship present in the historical stock data made it popular and got wide applications for stock market prediction. Contrasting to multilayer neural networks, FLANN uses functional expansion units to expand the input space into higher dimensions, thus generating hyperplanes which offer better discrimination capability in the input space. The feedback properties of recurrent neural networks make them more proficient and dynamic to model nonlinear systems accurately. Artificial chemical reaction optimization (ACRO) requires less number of tuning parameters with faster convergence speed. This article develops an ACRO-based recurrent functional link neural network (RFLN) termed as ACRRFLN, in which optimal structure and parameters of a RFLN are efficiently searched by ACRO. Also two evolutionary optimization techniques, i.e., particle swarm optimization (PSO) and genetic algorithm (GA) are employed to train RFLN separately. All the models are experimented and validated on forecasting stock closing prices of five stock markets. Results from extensive simulation studies clearly reveal the outperformance of ACRRFLN over other models similarly trained. Further, the Deibold-Mariano test justifies the statistical significance of the proposed model." @default.
- W2968339610 created "2019-08-22" @default.
- W2968339610 creator A5078061435 @default.
- W2968339610 creator A5083101992 @default.
- W2968339610 creator A5086277450 @default.
- W2968339610 date "2019-08-18" @default.
- W2968339610 modified "2023-09-24" @default.
- W2968339610 title "ACRRFLN: Artificial Chemical Reaction of Recurrent Functional Link Networks for Improved Stock Market Prediction" @default.
- W2968339610 cites W1986145156 @default.
- W2968339610 cites W1996984227 @default.
- W2968339610 cites W1999324399 @default.
- W2968339610 cites W2006410600 @default.
- W2968339610 cites W2012638612 @default.
- W2968339610 cites W2025623158 @default.
- W2968339610 cites W2029921820 @default.
- W2968339610 cites W2044674786 @default.
- W2968339610 cites W2046273291 @default.
- W2968339610 cites W2071516012 @default.
- W2968339610 cites W2136554306 @default.
- W2968339610 cites W2147885930 @default.
- W2968339610 cites W2161654621 @default.
- W2968339610 cites W2164933932 @default.
- W2968339610 cites W2639241327 @default.
- W2968339610 cites W2766716496 @default.
- W2968339610 cites W2793675520 @default.
- W2968339610 cites W333233685 @default.
- W2968339610 cites W4239922572 @default.
- W2968339610 cites W4300106150 @default.
- W2968339610 cites W4362091335 @default.
- W2968339610 doi "https://doi.org/10.1007/978-981-13-8676-3_28" @default.
- W2968339610 hasPublicationYear "2019" @default.
- W2968339610 type Work @default.
- W2968339610 sameAs 2968339610 @default.
- W2968339610 citedByCount "2" @default.
- W2968339610 countsByYear W29683396102021 @default.
- W2968339610 countsByYear W29683396102023 @default.
- W2968339610 crossrefType "book-chapter" @default.
- W2968339610 hasAuthorship W2968339610A5078061435 @default.
- W2968339610 hasAuthorship W2968339610A5083101992 @default.
- W2968339610 hasAuthorship W2968339610A5086277450 @default.
- W2968339610 hasConcept C119857082 @default.
- W2968339610 hasConcept C121332964 @default.
- W2968339610 hasConcept C151730666 @default.
- W2968339610 hasConcept C154945302 @default.
- W2968339610 hasConcept C158622935 @default.
- W2968339610 hasConcept C2524010 @default.
- W2968339610 hasConcept C2780299701 @default.
- W2968339610 hasConcept C2780762169 @default.
- W2968339610 hasConcept C33923547 @default.
- W2968339610 hasConcept C41008148 @default.
- W2968339610 hasConcept C50644808 @default.
- W2968339610 hasConcept C62520636 @default.
- W2968339610 hasConcept C68693459 @default.
- W2968339610 hasConcept C85617194 @default.
- W2968339610 hasConcept C86803240 @default.
- W2968339610 hasConceptScore W2968339610C119857082 @default.
- W2968339610 hasConceptScore W2968339610C121332964 @default.
- W2968339610 hasConceptScore W2968339610C151730666 @default.
- W2968339610 hasConceptScore W2968339610C154945302 @default.
- W2968339610 hasConceptScore W2968339610C158622935 @default.
- W2968339610 hasConceptScore W2968339610C2524010 @default.
- W2968339610 hasConceptScore W2968339610C2780299701 @default.
- W2968339610 hasConceptScore W2968339610C2780762169 @default.
- W2968339610 hasConceptScore W2968339610C33923547 @default.
- W2968339610 hasConceptScore W2968339610C41008148 @default.
- W2968339610 hasConceptScore W2968339610C50644808 @default.
- W2968339610 hasConceptScore W2968339610C62520636 @default.
- W2968339610 hasConceptScore W2968339610C68693459 @default.
- W2968339610 hasConceptScore W2968339610C85617194 @default.
- W2968339610 hasConceptScore W2968339610C86803240 @default.
- W2968339610 hasLocation W29683396101 @default.
- W2968339610 hasOpenAccess W2968339610 @default.
- W2968339610 hasPrimaryLocation W29683396101 @default.
- W2968339610 hasRelatedWork W1552676697 @default.
- W2968339610 hasRelatedWork W2034357437 @default.
- W2968339610 hasRelatedWork W2067874406 @default.
- W2968339610 hasRelatedWork W2361617591 @default.
- W2968339610 hasRelatedWork W2961085424 @default.
- W2968339610 hasRelatedWork W4286629047 @default.
- W2968339610 hasRelatedWork W4306321456 @default.
- W2968339610 hasRelatedWork W4306674287 @default.
- W2968339610 hasRelatedWork W1629725936 @default.
- W2968339610 hasRelatedWork W4224009465 @default.
- W2968339610 isParatext "false" @default.
- W2968339610 isRetracted "false" @default.
- W2968339610 magId "2968339610" @default.
- W2968339610 workType "book-chapter" @default.