Matches in SemOpenAlex for { <https://semopenalex.org/work/W2968368265> ?p ?o ?g. }
- W2968368265 endingPage "734" @default.
- W2968368265 startingPage "720" @default.
- W2968368265 abstract "In this study, matrix-related pores from differing depositional shales were explored comparatively. Among of them, Lower Cambrian shale (3.83%Ro) and Lower Silurian shale (2.61%Ro) were marine sediments with abundant oil-prone kerogen and rich siliceous minerals, while Upper Permian shale (2.44%Ro) were transitional sediments with redundant gas-prone kerogen and rich clay. The morphology and geometry of pores were investigated via fractal analyses based on N2 adsorption and direct imaging. The effects of organic matter (OM) within different shales were also highlighted through N2 adsorption before and after OM isolation. Lower Cambrian shale possessed the lowest pore volumes (PV) (averaging 0.0109 ml/g) and the lowest pore surface areas (PSA) (averaging 9.09 m2/g) as well as the smallest average pore diameters (APD) (averaging 5.47 nm). Dissolved pore with dead-end openings was the main type. The PV and PSA of isolated OM were only approximately 1 and 2 times higher than that of corresponding samples, respectively. In contrast, Lower Silurian shale possessed the highest PV (averaging 0.0109 ml/g) and the highest PSA (averaging 9.09 m2/g) as well as relatively large APD (averaging 13.43 nm). Organic-hosted pores (OMP) with cellular structure is the main type. The PV and PSA of isolated OM were approximately 8.5 and 3 times higher than that of corresponding samples, respectively. Upper Permian shale with the largest averaging pore diameters (averaging 18.82 nm) presented high PV (averaging 0.0209 ml/g) similar to that of Lower Silurian shale, and a low PSA (averaging 10.85 m2/g) like that of Lower Cambrian shale. Pore associated with clay flakes was the main type. The PV and PSA of isolated OM were only approximately 0.6 times and 1 times higher than that of corresponding samples, respectively. For marine shale, matrix-related pore features are synergy effects of the matrix basis where pre-existing space controls the occurrence of porous OM and functions as the shelter for OMP with an appropriate thermal maturity. However, extensive diagenesis can overprint the effects of matrixes on pore properties, because oil-prone kerogen is sensitive to thermal maturity. The specific material composition of transitional shale limit pore properties, because dominant structured OM is thermally stable with limited migration ability and pore contribution. Hence, diagenetic differences and material diversities may be attributed to the discrepancies of pore properties between marine shale and transitional shale." @default.
- W2968368265 created "2019-08-22" @default.
- W2968368265 creator A5002700382 @default.
- W2968368265 creator A5004025420 @default.
- W2968368265 creator A5022086931 @default.
- W2968368265 creator A5022526821 @default.
- W2968368265 creator A5032241776 @default.
- W2968368265 creator A5034396097 @default.
- W2968368265 creator A5047957645 @default.
- W2968368265 creator A5062076456 @default.
- W2968368265 creator A5068788360 @default.
- W2968368265 date "2020-01-01" @default.
- W2968368265 modified "2023-10-18" @default.
- W2968368265 title "Various controlling factors of matrix-related pores from differing depositional shales of the Yangtze Block in south China: Insight from organic matter isolation and fractal analysis" @default.
- W2968368265 cites W1966744853 @default.
- W2968368265 cites W1979044833 @default.
- W2968368265 cites W1980073009 @default.
- W2968368265 cites W1980083955 @default.
- W2968368265 cites W1994160818 @default.
- W2968368265 cites W1995026965 @default.
- W2968368265 cites W2008973329 @default.
- W2968368265 cites W2013591344 @default.
- W2968368265 cites W2035563703 @default.
- W2968368265 cites W2052002471 @default.
- W2968368265 cites W2071771565 @default.
- W2968368265 cites W2071892531 @default.
- W2968368265 cites W2074834335 @default.
- W2968368265 cites W2080246391 @default.
- W2968368265 cites W2094585653 @default.
- W2968368265 cites W2104076412 @default.
- W2968368265 cites W2104527825 @default.
- W2968368265 cites W2107163286 @default.
- W2968368265 cites W2117351871 @default.
- W2968368265 cites W2128873110 @default.
- W2968368265 cites W2129806194 @default.
- W2968368265 cites W2136049384 @default.
- W2968368265 cites W2140962967 @default.
- W2968368265 cites W2150922969 @default.
- W2968368265 cites W2153224667 @default.
- W2968368265 cites W2156007437 @default.
- W2968368265 cites W2156608310 @default.
- W2968368265 cites W2158897778 @default.
- W2968368265 cites W2166476646 @default.
- W2968368265 cites W2170995602 @default.
- W2968368265 cites W2192663761 @default.
- W2968368265 cites W2283172874 @default.
- W2968368265 cites W2283921210 @default.
- W2968368265 cites W2318085486 @default.
- W2968368265 cites W2514368239 @default.
- W2968368265 cites W2516858222 @default.
- W2968368265 cites W2530695332 @default.
- W2968368265 cites W2563421028 @default.
- W2968368265 cites W2565054926 @default.
- W2968368265 cites W2566365780 @default.
- W2968368265 cites W2578320617 @default.
- W2968368265 cites W2643832315 @default.
- W2968368265 cites W265595979 @default.
- W2968368265 cites W2800718634 @default.
- W2968368265 cites W2803414028 @default.
- W2968368265 cites W2803950589 @default.
- W2968368265 cites W2890551816 @default.
- W2968368265 cites W2901676830 @default.
- W2968368265 cites W4241889653 @default.
- W2968368265 doi "https://doi.org/10.1016/j.marpetgeo.2019.08.019" @default.
- W2968368265 hasPublicationYear "2020" @default.
- W2968368265 type Work @default.
- W2968368265 sameAs 2968368265 @default.
- W2968368265 citedByCount "12" @default.
- W2968368265 countsByYear W29683682652021 @default.
- W2968368265 countsByYear W29683682652022 @default.
- W2968368265 countsByYear W29683682652023 @default.
- W2968368265 crossrefType "journal-article" @default.
- W2968368265 hasAuthorship W2968368265A5002700382 @default.
- W2968368265 hasAuthorship W2968368265A5004025420 @default.
- W2968368265 hasAuthorship W2968368265A5022086931 @default.
- W2968368265 hasAuthorship W2968368265A5022526821 @default.
- W2968368265 hasAuthorship W2968368265A5032241776 @default.
- W2968368265 hasAuthorship W2968368265A5034396097 @default.
- W2968368265 hasAuthorship W2968368265A5047957645 @default.
- W2968368265 hasAuthorship W2968368265A5062076456 @default.
- W2968368265 hasAuthorship W2968368265A5068788360 @default.
- W2968368265 hasConcept C106487976 @default.
- W2968368265 hasConcept C109007969 @default.
- W2968368265 hasConcept C126559015 @default.
- W2968368265 hasConcept C126753816 @default.
- W2968368265 hasConcept C127313418 @default.
- W2968368265 hasConcept C130452526 @default.
- W2968368265 hasConcept C151730666 @default.
- W2968368265 hasConcept C153127940 @default.
- W2968368265 hasConcept C178790620 @default.
- W2968368265 hasConcept C185592680 @default.
- W2968368265 hasConcept C199289684 @default.
- W2968368265 hasConcept C2776169166 @default.
- W2968368265 hasConcept C2779196632 @default.
- W2968368265 hasConcept C40212044 @default.
- W2968368265 hasConcept C43617362 @default.
- W2968368265 hasConcept C48743137 @default.
- W2968368265 hasConcept C83365034 @default.