Matches in SemOpenAlex for { <https://semopenalex.org/work/W2968376492> ?p ?o ?g. }
- W2968376492 abstract "We propose a greedy and supervised learning approach for visibility-based exploration, reconstruction and surveillance. Using a level set representation, we train a convolutional neural network to determine vantage points that maximize visibility. We show that this method drastically reduces the on-line computational cost and determines a small set of vantage points that solve the problem. This enables us to efficiently produce highly-resolved and topologically accurate maps of complex 3D environments. Unlike traditional next-best-view and frontier-based strategies, the proposed method accounts for geometric priors while evaluating potential vantage points. While existing deep learning approaches focus on obstacle avoidance and local navigation, our method aims at finding near-optimal solutions to the more global exploration problem. We present realistic simulations on 2D and 3D urban environments." @default.
- W2968376492 created "2019-08-22" @default.
- W2968376492 creator A5059840733 @default.
- W2968376492 creator A5077408530 @default.
- W2968376492 date "2019-05-01" @default.
- W2968376492 modified "2023-09-25" @default.
- W2968376492 title "Autonomous Exploration, Reconstruction, and Surveillance of 3D Environments Aided by Deep Learning" @default.
- W2968376492 cites W1484557735 @default.
- W2968376492 cites W1525891753 @default.
- W2968376492 cites W1975138405 @default.
- W2968376492 cites W1981988453 @default.
- W2968376492 cites W1991113069 @default.
- W2968376492 cites W2030535045 @default.
- W2968376492 cites W2063442090 @default.
- W2968376492 cites W2070014465 @default.
- W2968376492 cites W2073815206 @default.
- W2968376492 cites W2087422927 @default.
- W2968376492 cites W2089437550 @default.
- W2968376492 cites W2098012807 @default.
- W2968376492 cites W2107667896 @default.
- W2968376492 cites W2126369940 @default.
- W2968376492 cites W2127578024 @default.
- W2968376492 cites W2142617093 @default.
- W2968376492 cites W2146881125 @default.
- W2968376492 cites W2167061621 @default.
- W2968376492 cites W2329411194 @default.
- W2968376492 cites W2409009991 @default.
- W2968376492 cites W2502636724 @default.
- W2968376492 cites W2552165419 @default.
- W2968376492 cites W2563670399 @default.
- W2968376492 cites W2609402060 @default.
- W2968376492 cites W2771342126 @default.
- W2968376492 cites W2962862065 @default.
- W2968376492 cites W2963428623 @default.
- W2968376492 cites W1980655707 @default.
- W2968376492 doi "https://doi.org/10.1109/icra.2019.8794426" @default.
- W2968376492 hasPublicationYear "2019" @default.
- W2968376492 type Work @default.
- W2968376492 sameAs 2968376492 @default.
- W2968376492 citedByCount "14" @default.
- W2968376492 countsByYear W29683764922019 @default.
- W2968376492 countsByYear W29683764922020 @default.
- W2968376492 countsByYear W29683764922021 @default.
- W2968376492 countsByYear W29683764922022 @default.
- W2968376492 crossrefType "proceedings-article" @default.
- W2968376492 hasAuthorship W2968376492A5059840733 @default.
- W2968376492 hasAuthorship W2968376492A5077408530 @default.
- W2968376492 hasConcept C108583219 @default.
- W2968376492 hasConcept C119857082 @default.
- W2968376492 hasConcept C120665830 @default.
- W2968376492 hasConcept C121332964 @default.
- W2968376492 hasConcept C123403432 @default.
- W2968376492 hasConcept C153294291 @default.
- W2968376492 hasConcept C154945302 @default.
- W2968376492 hasConcept C166957645 @default.
- W2968376492 hasConcept C177264268 @default.
- W2968376492 hasConcept C17744445 @default.
- W2968376492 hasConcept C192209626 @default.
- W2968376492 hasConcept C199360897 @default.
- W2968376492 hasConcept C199539241 @default.
- W2968376492 hasConcept C205649164 @default.
- W2968376492 hasConcept C2776359362 @default.
- W2968376492 hasConcept C2776650193 @default.
- W2968376492 hasConcept C31972630 @default.
- W2968376492 hasConcept C41008148 @default.
- W2968376492 hasConcept C81363708 @default.
- W2968376492 hasConcept C94625758 @default.
- W2968376492 hasConceptScore W2968376492C108583219 @default.
- W2968376492 hasConceptScore W2968376492C119857082 @default.
- W2968376492 hasConceptScore W2968376492C120665830 @default.
- W2968376492 hasConceptScore W2968376492C121332964 @default.
- W2968376492 hasConceptScore W2968376492C123403432 @default.
- W2968376492 hasConceptScore W2968376492C153294291 @default.
- W2968376492 hasConceptScore W2968376492C154945302 @default.
- W2968376492 hasConceptScore W2968376492C166957645 @default.
- W2968376492 hasConceptScore W2968376492C177264268 @default.
- W2968376492 hasConceptScore W2968376492C17744445 @default.
- W2968376492 hasConceptScore W2968376492C192209626 @default.
- W2968376492 hasConceptScore W2968376492C199360897 @default.
- W2968376492 hasConceptScore W2968376492C199539241 @default.
- W2968376492 hasConceptScore W2968376492C205649164 @default.
- W2968376492 hasConceptScore W2968376492C2776359362 @default.
- W2968376492 hasConceptScore W2968376492C2776650193 @default.
- W2968376492 hasConceptScore W2968376492C31972630 @default.
- W2968376492 hasConceptScore W2968376492C41008148 @default.
- W2968376492 hasConceptScore W2968376492C81363708 @default.
- W2968376492 hasConceptScore W2968376492C94625758 @default.
- W2968376492 hasLocation W29683764921 @default.
- W2968376492 hasOpenAccess W2968376492 @default.
- W2968376492 hasPrimaryLocation W29683764921 @default.
- W2968376492 hasRelatedWork W2096268286 @default.
- W2968376492 hasRelatedWork W2107667896 @default.
- W2968376492 hasRelatedWork W2129652899 @default.
- W2968376492 hasRelatedWork W2739572770 @default.
- W2968376492 hasRelatedWork W2773567017 @default.
- W2968376492 hasRelatedWork W2789329550 @default.
- W2968376492 hasRelatedWork W2810956809 @default.
- W2968376492 hasRelatedWork W2891553732 @default.
- W2968376492 hasRelatedWork W2892244049 @default.
- W2968376492 hasRelatedWork W2955836939 @default.