Matches in SemOpenAlex for { <https://semopenalex.org/work/W2968475066> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W2968475066 endingPage "125" @default.
- W2968475066 startingPage "125" @default.
- W2968475066 abstract "125 Objectives: Despite significant improvements in local control due to improved radiotherapy, local recurrence remains a primary issue in patients with advanced nasopharyngeal carcinoma (NPC). The purpose of this study was to identify optimal machine learning methods for radiomics-based differentiation of local recurrence versus inflammation from post-treatment nasopharyngeal PET/CT images. Methods: 76 patients treated for NPC were enrolled in our study (41/35 local recurrence/ inflammation as confirmed by pathology). A total of 80 radiomic features were extracted from 18F-FDG PET images for each patient. The diagnostic performances (differentiating between local recurrence vs. inflammation) were investigated for 84 cross-combinations derived from 12 feature selection methods and 7 classifiers. Leave-one-out cross validation was applied for feature selection and classification, and the diagnostic performance was evaluated by two metrics: area under the receiver operating characteristic (ROC) curve (AUC) and test error. Furthermore, we compared the performance of radiomic signature with routine SUVmax. Results: (1) 5/7 classifiers (KNN, LDA, LR, NB, RBF-SVM) exhibited high diagnostic performance in combination with the majority of feature selection methods. (2) Most combined machine learning methods demonstrated relatively low test error except for 6/12 combinations with the DT classifier and LS + KNN. (3a) 10 combined methods satisfied both AUC>0.8592 (75th percentile value) and test error 1.6599 (75th percentile value). (3b) FSV + KNN and L0 + NB displayed performances that were overall more accurate (AUC, 0.8857 and 0.8878; sensitivity, 0.7317 and 0.7805; specificity, 0.9429 and 0.9143) and reliable (test error, 0.2105 and 0.2105) relative to other methods. (4) The radiomic signature performed significantly better than SUVmax alone (AUC: 0.8369; sensitivity: 0.7317; specificity: 0.8857; test error: 0.2763), the p-value of AUC less than 0.05. Conclusions: Our study identified the most accurate and reliable machine learning methods for radiomics-based differentiation of local recurrence versus inflammation from post-treatment nasopharyngeal PET/CT images. The resulting radiomic signature significantly outperformed conventional analysis in terms of accuracy and reliability. Acknowledgments: This work was supported by the National Natural Science Foundation of China under grants 61628105, 81501541, the National key research and development program under grant 2016YFC0104003, the Natural Science Foundation of Guangdong Province under grants 2016A030313577, and the Program of Pearl River Young Talents of Science and Technology in Guangzhou under grant 201610010011." @default.
- W2968475066 created "2019-08-22" @default.
- W2968475066 creator A5021438906 @default.
- W2968475066 creator A5026616191 @default.
- W2968475066 creator A5028736883 @default.
- W2968475066 creator A5034620148 @default.
- W2968475066 creator A5054554103 @default.
- W2968475066 creator A5067011239 @default.
- W2968475066 creator A5084999538 @default.
- W2968475066 creator A5089411715 @default.
- W2968475066 date "2018-05-01" @default.
- W2968475066 modified "2023-09-27" @default.
- W2968475066 title "Machine learning methods for optimal differentiation of recurrence versus inflammation from post-therapy nasopharyngeal 18F-FDG PET/CT images" @default.
- W2968475066 hasPublicationYear "2018" @default.
- W2968475066 type Work @default.
- W2968475066 sameAs 2968475066 @default.
- W2968475066 citedByCount "0" @default.
- W2968475066 crossrefType "journal-article" @default.
- W2968475066 hasAuthorship W2968475066A5021438906 @default.
- W2968475066 hasAuthorship W2968475066A5026616191 @default.
- W2968475066 hasAuthorship W2968475066A5028736883 @default.
- W2968475066 hasAuthorship W2968475066A5034620148 @default.
- W2968475066 hasAuthorship W2968475066A5054554103 @default.
- W2968475066 hasAuthorship W2968475066A5067011239 @default.
- W2968475066 hasAuthorship W2968475066A5084999538 @default.
- W2968475066 hasAuthorship W2968475066A5089411715 @default.
- W2968475066 hasConcept C105795698 @default.
- W2968475066 hasConcept C122048520 @default.
- W2968475066 hasConcept C126322002 @default.
- W2968475066 hasConcept C126838900 @default.
- W2968475066 hasConcept C138885662 @default.
- W2968475066 hasConcept C148483581 @default.
- W2968475066 hasConcept C154945302 @default.
- W2968475066 hasConcept C2776401178 @default.
- W2968475066 hasConcept C2778997737 @default.
- W2968475066 hasConcept C2989005 @default.
- W2968475066 hasConcept C33923547 @default.
- W2968475066 hasConcept C41008148 @default.
- W2968475066 hasConcept C41895202 @default.
- W2968475066 hasConcept C509974204 @default.
- W2968475066 hasConcept C58471807 @default.
- W2968475066 hasConcept C71924100 @default.
- W2968475066 hasConcept C95623464 @default.
- W2968475066 hasConceptScore W2968475066C105795698 @default.
- W2968475066 hasConceptScore W2968475066C122048520 @default.
- W2968475066 hasConceptScore W2968475066C126322002 @default.
- W2968475066 hasConceptScore W2968475066C126838900 @default.
- W2968475066 hasConceptScore W2968475066C138885662 @default.
- W2968475066 hasConceptScore W2968475066C148483581 @default.
- W2968475066 hasConceptScore W2968475066C154945302 @default.
- W2968475066 hasConceptScore W2968475066C2776401178 @default.
- W2968475066 hasConceptScore W2968475066C2778997737 @default.
- W2968475066 hasConceptScore W2968475066C2989005 @default.
- W2968475066 hasConceptScore W2968475066C33923547 @default.
- W2968475066 hasConceptScore W2968475066C41008148 @default.
- W2968475066 hasConceptScore W2968475066C41895202 @default.
- W2968475066 hasConceptScore W2968475066C509974204 @default.
- W2968475066 hasConceptScore W2968475066C58471807 @default.
- W2968475066 hasConceptScore W2968475066C71924100 @default.
- W2968475066 hasConceptScore W2968475066C95623464 @default.
- W2968475066 hasLocation W29684750661 @default.
- W2968475066 hasOpenAccess W2968475066 @default.
- W2968475066 hasPrimaryLocation W29684750661 @default.
- W2968475066 hasRelatedWork W1990594463 @default.
- W2968475066 hasRelatedWork W2726440677 @default.
- W2968475066 hasRelatedWork W2793517205 @default.
- W2968475066 hasRelatedWork W2799944205 @default.
- W2968475066 hasRelatedWork W2885668908 @default.
- W2968475066 hasRelatedWork W2921220101 @default.
- W2968475066 hasRelatedWork W2936375668 @default.
- W2968475066 hasRelatedWork W2955781876 @default.
- W2968475066 hasRelatedWork W2963464382 @default.
- W2968475066 hasRelatedWork W2989661031 @default.
- W2968475066 hasRelatedWork W3009755586 @default.
- W2968475066 hasRelatedWork W3136520784 @default.
- W2968475066 hasRelatedWork W3136881316 @default.
- W2968475066 hasRelatedWork W3138182816 @default.
- W2968475066 hasRelatedWork W3155010035 @default.
- W2968475066 hasRelatedWork W3165606404 @default.
- W2968475066 hasRelatedWork W3169891031 @default.
- W2968475066 hasRelatedWork W3179563278 @default.
- W2968475066 hasRelatedWork W3210236964 @default.
- W2968475066 hasRelatedWork W3212997451 @default.
- W2968475066 hasVolume "59" @default.
- W2968475066 isParatext "false" @default.
- W2968475066 isRetracted "false" @default.
- W2968475066 magId "2968475066" @default.
- W2968475066 workType "article" @default.