Matches in SemOpenAlex for { <https://semopenalex.org/work/W2968505768> ?p ?o ?g. }
- W2968505768 abstract "Deep learning architectures and Convolutional Neural Networks (CNNs) have made a significant impact in learning embeddings of high-dimensional datasets. In some cases, and especially in the case of high-dimensional graph data, the interlinkage of data points may be hard to model.Previous approaches in applying the convolution function on graphs, namely the Graph Convolutional Networks (GCNs), presented neural networks architectures that encode information of individual nodes along with their connectivity. Nonetheless, these methods face the same issues as in traditional graph-based machine learning techniques i.e. the requirement of full matrix computations. This requirement bounds the applicability of the GCNs on the available computational resources. In this paper, the following assumption is evaluated: the training of a GCN with multiple subsets of the full data matrix is possible and converges to the full data matrix training scores, thus lifting the aforementioned limitation.Following this outcome, different subset selection methodologies are also examined to evaluate the impact of the learning curriculum in the performance of the trained model in small as well as very large scale graph datasets." @default.
- W2968505768 created "2019-08-22" @default.
- W2968505768 creator A5006823858 @default.
- W2968505768 creator A5023583976 @default.
- W2968505768 creator A5071585254 @default.
- W2968505768 creator A5076315708 @default.
- W2968505768 creator A5077349484 @default.
- W2968505768 date "2019-06-01" @default.
- W2968505768 modified "2023-09-27" @default.
- W2968505768 title "Embedding Big Data in Graph Convolutional Networks" @default.
- W2968505768 cites W1512387364 @default.
- W2968505768 cites W1908728294 @default.
- W2968505768 cites W1994940238 @default.
- W2968505768 cites W2056021151 @default.
- W2968505768 cites W2116341502 @default.
- W2968505768 cites W2132202037 @default.
- W2968505768 cites W2158698691 @default.
- W2968505768 cites W2177500510 @default.
- W2968505768 cites W229097380 @default.
- W2968505768 cites W2296073425 @default.
- W2968505768 cites W2302255633 @default.
- W2968505768 cites W2519887557 @default.
- W2968505768 cites W2558748708 @default.
- W2968505768 cites W2604230684 @default.
- W2968505768 cites W2907373723 @default.
- W2968505768 cites W2963224980 @default.
- W2968505768 cites W2963312446 @default.
- W2968505768 cites W2964145825 @default.
- W2968505768 cites W2964311892 @default.
- W2968505768 cites W2964321699 @default.
- W2968505768 cites W637153065 @default.
- W2968505768 doi "https://doi.org/10.1109/ice.2019.8792632" @default.
- W2968505768 hasPublicationYear "2019" @default.
- W2968505768 type Work @default.
- W2968505768 sameAs 2968505768 @default.
- W2968505768 citedByCount "0" @default.
- W2968505768 crossrefType "proceedings-article" @default.
- W2968505768 hasAuthorship W2968505768A5006823858 @default.
- W2968505768 hasAuthorship W2968505768A5023583976 @default.
- W2968505768 hasAuthorship W2968505768A5071585254 @default.
- W2968505768 hasAuthorship W2968505768A5076315708 @default.
- W2968505768 hasAuthorship W2968505768A5077349484 @default.
- W2968505768 hasConcept C104317684 @default.
- W2968505768 hasConcept C108583219 @default.
- W2968505768 hasConcept C119857082 @default.
- W2968505768 hasConcept C132525143 @default.
- W2968505768 hasConcept C153180895 @default.
- W2968505768 hasConcept C154945302 @default.
- W2968505768 hasConcept C185592680 @default.
- W2968505768 hasConcept C41008148 @default.
- W2968505768 hasConcept C41608201 @default.
- W2968505768 hasConcept C55493867 @default.
- W2968505768 hasConcept C66746571 @default.
- W2968505768 hasConcept C67186912 @default.
- W2968505768 hasConcept C75564084 @default.
- W2968505768 hasConcept C77088390 @default.
- W2968505768 hasConcept C80444323 @default.
- W2968505768 hasConcept C81363708 @default.
- W2968505768 hasConceptScore W2968505768C104317684 @default.
- W2968505768 hasConceptScore W2968505768C108583219 @default.
- W2968505768 hasConceptScore W2968505768C119857082 @default.
- W2968505768 hasConceptScore W2968505768C132525143 @default.
- W2968505768 hasConceptScore W2968505768C153180895 @default.
- W2968505768 hasConceptScore W2968505768C154945302 @default.
- W2968505768 hasConceptScore W2968505768C185592680 @default.
- W2968505768 hasConceptScore W2968505768C41008148 @default.
- W2968505768 hasConceptScore W2968505768C41608201 @default.
- W2968505768 hasConceptScore W2968505768C55493867 @default.
- W2968505768 hasConceptScore W2968505768C66746571 @default.
- W2968505768 hasConceptScore W2968505768C67186912 @default.
- W2968505768 hasConceptScore W2968505768C75564084 @default.
- W2968505768 hasConceptScore W2968505768C77088390 @default.
- W2968505768 hasConceptScore W2968505768C80444323 @default.
- W2968505768 hasConceptScore W2968505768C81363708 @default.
- W2968505768 hasLocation W29685057681 @default.
- W2968505768 hasOpenAccess W2968505768 @default.
- W2968505768 hasPrimaryLocation W29685057681 @default.
- W2968505768 hasRelatedWork W2226408297 @default.
- W2968505768 hasRelatedWork W2285131997 @default.
- W2968505768 hasRelatedWork W2565330852 @default.
- W2968505768 hasRelatedWork W2599207826 @default.
- W2968505768 hasRelatedWork W2751507650 @default.
- W2968505768 hasRelatedWork W2751808960 @default.
- W2968505768 hasRelatedWork W2768242641 @default.
- W2968505768 hasRelatedWork W2783819585 @default.
- W2968505768 hasRelatedWork W2894990412 @default.
- W2968505768 hasRelatedWork W2919448565 @default.
- W2968505768 hasRelatedWork W2958123697 @default.
- W2968505768 hasRelatedWork W2968521939 @default.
- W2968505768 hasRelatedWork W2969547461 @default.
- W2968505768 hasRelatedWork W2974474613 @default.
- W2968505768 hasRelatedWork W2991847337 @default.
- W2968505768 hasRelatedWork W3021719071 @default.
- W2968505768 hasRelatedWork W3103746253 @default.
- W2968505768 hasRelatedWork W3128974420 @default.
- W2968505768 hasRelatedWork W3164434125 @default.
- W2968505768 hasRelatedWork W3106330305 @default.
- W2968505768 isParatext "false" @default.
- W2968505768 isRetracted "false" @default.
- W2968505768 magId "2968505768" @default.