Matches in SemOpenAlex for { <https://semopenalex.org/work/W2968524983> ?p ?o ?g. }
Showing items 1 to 64 of
64
with 100 items per page.
- W2968524983 abstract "With the development of data mining learning algorithms, such as One-class SVM, Fuzzy Clustering, K-means, Apriori and so on, they are more and more widely used in the field of security log analysis. For example, the combination of time series algorithm and association algorithm can be used to mine frequent item sets in transaction databases, and then generate association rules to discover the intrinsic relationship of security logs and find out the potential attack patterns of hackers. The combination of dimensionality reduction algorithm and clustering algorithm can speed up the distinction between normal log data and abnormal log data, and improve the efficiency. This paper discusses the latest security log analysis methods based on different data mining algorithms at home and abroad, lists the contribution and role of each research method for security analysis, and compares the advantages and disadvantages of the combination of different data mining algorithms for security analysis. According to the current demand of network security research, this paper puts forward the improvement direction of combining data mining algorithm with security log in the future." @default.
- W2968524983 created "2019-08-22" @default.
- W2968524983 creator A5039082812 @default.
- W2968524983 creator A5077138670 @default.
- W2968524983 creator A5086558029 @default.
- W2968524983 date "2019-06-11" @default.
- W2968524983 modified "2023-09-25" @default.
- W2968524983 title "Survey of Intrusion Detection Methods Based on Data Mining Algorithms" @default.
- W2968524983 cites W2006946731 @default.
- W2968524983 cites W2007087405 @default.
- W2968524983 cites W2020651442 @default.
- W2968524983 cites W2058480153 @default.
- W2968524983 cites W2081747377 @default.
- W2968524983 cites W2113197248 @default.
- W2968524983 cites W2132870739 @default.
- W2968524983 cites W2147457514 @default.
- W2968524983 cites W2155033583 @default.
- W2968524983 cites W2155374231 @default.
- W2968524983 cites W2178414046 @default.
- W2968524983 cites W2288293293 @default.
- W2968524983 cites W2289015916 @default.
- W2968524983 cites W2527999453 @default.
- W2968524983 cites W2531160404 @default.
- W2968524983 cites W2727180277 @default.
- W2968524983 cites W2802762069 @default.
- W2968524983 cites W2907207075 @default.
- W2968524983 doi "https://doi.org/10.1145/3341620.3341632" @default.
- W2968524983 hasPublicationYear "2019" @default.
- W2968524983 type Work @default.
- W2968524983 sameAs 2968524983 @default.
- W2968524983 citedByCount "6" @default.
- W2968524983 countsByYear W29685249832020 @default.
- W2968524983 countsByYear W29685249832021 @default.
- W2968524983 countsByYear W29685249832022 @default.
- W2968524983 countsByYear W29685249832023 @default.
- W2968524983 crossrefType "proceedings-article" @default.
- W2968524983 hasAuthorship W2968524983A5039082812 @default.
- W2968524983 hasAuthorship W2968524983A5077138670 @default.
- W2968524983 hasAuthorship W2968524983A5086558029 @default.
- W2968524983 hasConcept C11413529 @default.
- W2968524983 hasConcept C124101348 @default.
- W2968524983 hasConcept C35525427 @default.
- W2968524983 hasConcept C41008148 @default.
- W2968524983 hasConceptScore W2968524983C11413529 @default.
- W2968524983 hasConceptScore W2968524983C124101348 @default.
- W2968524983 hasConceptScore W2968524983C35525427 @default.
- W2968524983 hasConceptScore W2968524983C41008148 @default.
- W2968524983 hasLocation W29685249831 @default.
- W2968524983 hasOpenAccess W2968524983 @default.
- W2968524983 hasPrimaryLocation W29685249831 @default.
- W2968524983 hasRelatedWork W2000940208 @default.
- W2968524983 hasRelatedWork W2347970476 @default.
- W2968524983 hasRelatedWork W2351252967 @default.
- W2968524983 hasRelatedWork W2353311415 @default.
- W2968524983 hasRelatedWork W2366221835 @default.
- W2968524983 hasRelatedWork W2373866020 @default.
- W2968524983 hasRelatedWork W2377933504 @default.
- W2968524983 hasRelatedWork W2388271354 @default.
- W2968524983 hasRelatedWork W2799811901 @default.
- W2968524983 hasRelatedWork W589165813 @default.
- W2968524983 isParatext "false" @default.
- W2968524983 isRetracted "false" @default.
- W2968524983 magId "2968524983" @default.
- W2968524983 workType "article" @default.