Matches in SemOpenAlex for { <https://semopenalex.org/work/W2968553640> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W2968553640 abstract "Over the past decades, neuroscientists are increasingly becoming aware of the limited reproducibility of neuroimaging results. More particularly, functional Magnetic Resonance Imaging (fMRI) data is characterized by a low signal-to-noise ratio with a high cost to scan participants. This in turn leads to a low observed power in the literature to detect reasonable effect sizes (Poldrack et al., 2017). Several solutions have been proposed, from which one is to systematically aggregate published studies to improve the control of type I and II errors. In this contribution, we investigate two approaches of pooling fMRI data across studies. A first method is to extend the hierarchical two-stage model typically used in an fMRI data analysis to aggregate trials and subjects within individual studies. For every spatial location in the brain (i.e. every voxel), a General Linear Model (GLM) is fitted with a random effects term associated with studies. We use current software from the neuroimaging literature to estimate all parameters from the model. Note that we need a brain image per study containing the parameter estimates for the GLM at every brain location. And we need an additional map containing its variance estimates.A second approach is to rely on methods for meta-analysis using a random effects model. At every brain location, we transform the test-statistics associated with each study to Hedges’ g and calculate its variance. Then we estimate between-study heterogeneity using the method of moments estimator (DerSimonian and Laird, 1986). Finally, we calculate a weighted average with the weights being the inverse of the sum of within- and between-study variability. An added benefit of this approach is that we only need the sample size and one brain image per study containing the test-statistic at each location. We calculate for both methods the average standardized bias, length and coverage of confidence intervals using Monte-Carlo simulations and on resting state fMRI. The latter is obtained by instructing participants to do nothing in a scanner. The result is an image without any signal related to the design of a random experiment. Furthermore, it reflects realistic fMRI data under the null hypothesis of no activation (i.e. noise). Our results indicate that the three-level GLM model does not outperform meta-analysis techniques. Specifically, we observe more liberal empirical coverages associated with the three-level GLM model." @default.
- W2968553640 created "2019-08-22" @default.
- W2968553640 creator A5010226683 @default.
- W2968553640 creator A5039884597 @default.
- W2968553640 creator A5089381028 @default.
- W2968553640 date "2018-01-01" @default.
- W2968553640 modified "2023-09-27" @default.
- W2968553640 title "Evaluating statistical hierarchical models to pool fMRI results across studies" @default.
- W2968553640 hasPublicationYear "2018" @default.
- W2968553640 type Work @default.
- W2968553640 sameAs 2968553640 @default.
- W2968553640 citedByCount "0" @default.
- W2968553640 crossrefType "journal-article" @default.
- W2968553640 hasAuthorship W2968553640A5010226683 @default.
- W2968553640 hasAuthorship W2968553640A5039884597 @default.
- W2968553640 hasAuthorship W2968553640A5089381028 @default.
- W2968553640 hasConcept C105795698 @default.
- W2968553640 hasConcept C118552586 @default.
- W2968553640 hasConcept C121955636 @default.
- W2968553640 hasConcept C126322002 @default.
- W2968553640 hasConcept C144133560 @default.
- W2968553640 hasConcept C153180895 @default.
- W2968553640 hasConcept C154945302 @default.
- W2968553640 hasConcept C15744967 @default.
- W2968553640 hasConcept C163175372 @default.
- W2968553640 hasConcept C168743327 @default.
- W2968553640 hasConcept C169760540 @default.
- W2968553640 hasConcept C183905921 @default.
- W2968553640 hasConcept C185429906 @default.
- W2968553640 hasConcept C188321436 @default.
- W2968553640 hasConcept C196083921 @default.
- W2968553640 hasConcept C2776502983 @default.
- W2968553640 hasConcept C2779226451 @default.
- W2968553640 hasConcept C33923547 @default.
- W2968553640 hasConcept C40696583 @default.
- W2968553640 hasConcept C41008148 @default.
- W2968553640 hasConcept C53059260 @default.
- W2968553640 hasConcept C54170458 @default.
- W2968553640 hasConcept C58693492 @default.
- W2968553640 hasConcept C70437156 @default.
- W2968553640 hasConcept C71924100 @default.
- W2968553640 hasConcept C87007009 @default.
- W2968553640 hasConcept C95190672 @default.
- W2968553640 hasConcept C96608239 @default.
- W2968553640 hasConceptScore W2968553640C105795698 @default.
- W2968553640 hasConceptScore W2968553640C118552586 @default.
- W2968553640 hasConceptScore W2968553640C121955636 @default.
- W2968553640 hasConceptScore W2968553640C126322002 @default.
- W2968553640 hasConceptScore W2968553640C144133560 @default.
- W2968553640 hasConceptScore W2968553640C153180895 @default.
- W2968553640 hasConceptScore W2968553640C154945302 @default.
- W2968553640 hasConceptScore W2968553640C15744967 @default.
- W2968553640 hasConceptScore W2968553640C163175372 @default.
- W2968553640 hasConceptScore W2968553640C168743327 @default.
- W2968553640 hasConceptScore W2968553640C169760540 @default.
- W2968553640 hasConceptScore W2968553640C183905921 @default.
- W2968553640 hasConceptScore W2968553640C185429906 @default.
- W2968553640 hasConceptScore W2968553640C188321436 @default.
- W2968553640 hasConceptScore W2968553640C196083921 @default.
- W2968553640 hasConceptScore W2968553640C2776502983 @default.
- W2968553640 hasConceptScore W2968553640C2779226451 @default.
- W2968553640 hasConceptScore W2968553640C33923547 @default.
- W2968553640 hasConceptScore W2968553640C40696583 @default.
- W2968553640 hasConceptScore W2968553640C41008148 @default.
- W2968553640 hasConceptScore W2968553640C53059260 @default.
- W2968553640 hasConceptScore W2968553640C54170458 @default.
- W2968553640 hasConceptScore W2968553640C58693492 @default.
- W2968553640 hasConceptScore W2968553640C70437156 @default.
- W2968553640 hasConceptScore W2968553640C71924100 @default.
- W2968553640 hasConceptScore W2968553640C87007009 @default.
- W2968553640 hasConceptScore W2968553640C95190672 @default.
- W2968553640 hasConceptScore W2968553640C96608239 @default.
- W2968553640 hasLocation W29685536401 @default.
- W2968553640 hasOpenAccess W2968553640 @default.
- W2968553640 hasPrimaryLocation W29685536401 @default.
- W2968553640 hasRelatedWork W1536828803 @default.
- W2968553640 hasRelatedWork W2010509916 @default.
- W2968553640 hasRelatedWork W2020373578 @default.
- W2968553640 hasRelatedWork W2094243598 @default.
- W2968553640 hasRelatedWork W2103025278 @default.
- W2968553640 hasRelatedWork W2170736894 @default.
- W2968553640 hasRelatedWork W2278043290 @default.
- W2968553640 hasRelatedWork W2560405063 @default.
- W2968553640 hasRelatedWork W2740912055 @default.
- W2968553640 hasRelatedWork W2800148203 @default.
- W2968553640 hasRelatedWork W2887225246 @default.
- W2968553640 hasRelatedWork W2891308657 @default.
- W2968553640 hasRelatedWork W2899419114 @default.
- W2968553640 hasRelatedWork W2939228106 @default.
- W2968553640 hasRelatedWork W2995438192 @default.
- W2968553640 hasRelatedWork W3099138401 @default.
- W2968553640 hasRelatedWork W3128187087 @default.
- W2968553640 hasRelatedWork W328364258 @default.
- W2968553640 hasRelatedWork W70297192 @default.
- W2968553640 hasRelatedWork W2326837627 @default.
- W2968553640 isParatext "false" @default.
- W2968553640 isRetracted "false" @default.
- W2968553640 magId "2968553640" @default.
- W2968553640 workType "article" @default.