Matches in SemOpenAlex for { <https://semopenalex.org/work/W2968576467> ?p ?o ?g. }
- W2968576467 endingPage "101146" @default.
- W2968576467 startingPage "101146" @default.
- W2968576467 abstract "New fields such as regenerative engineering have driven the design of advanced biomaterials with a wide range of properties. Regenerative engineering is a multidisciplinary approach that integrates the fields of advanced materials science and engineering, stem cell science, physics, developmental biology, and clinical translation for the regeneration of complex tissues. The complexity and demands of this innovative approach have motivated the synthesis of new polymeric materials that can be customized to meet application-specific needs. Polyphosphazene polymers represent this fundamental change and are gaining renewed interest as biomaterials due to their outstanding synthetic flexibility, neutral bioactivity (buffering degradation products), and tunable properties across the range. Polyphosphazenes are a unique class of polymers composed of an inorganic backbone with alternating phosphorus and nitrogen atoms. Each phosphorus atom bears two substituents, with a wide variety of side groups available for property optimization. Polyphosphazenes have been investigated as potential biomaterials for regenerative engineering. Polyphosphazenes for use in regenerative applications have evolved as a class to include different generations of degradable polymers. The first generation of polyphosphazenes for tissue regeneration entailed the use of hydrolytically active side groups such as imidazole, lactate, glycolate, glucosyl, or glyceryl groups. These side groups were selected based on their ability to sensitize the polymer backbone to hydrolysis, which allowed them to break down into non-toxic small molecules that could be metabolized or excreted. The second generation of degradable polyphosphazenes developed consisted of polymers with amino acid ester side groups. When blended with poly (lactic acid-co-glycolic acid) (PLGA), the feasibility of neutralizing acidic degradation products of PLGA was demonstrated. The blends formed were mostly partially miscible. The desire to improve miscibility led to the design of the third generation of degradable polyphosphazenes by incorporating dipeptide side groups which impart significant hydrogen bonding capability to the polymer for the formation of completely miscible polyphosphazene-PLGA blends. Blend system of the dipeptide-based polyphosphazene and PLGA exhibit a unique degradation behavior that allows the formation of interconnected porous structures upon degradation. These inherent pore-forming properties have distinguished degradable polyphosphazenes as a potentially important class of biomaterials for further study. The design considerations and strategies for the different generations of degradable polyphosphazenes and future directions are discussed." @default.
- W2968576467 created "2019-08-22" @default.
- W2968576467 creator A5024272228 @default.
- W2968576467 creator A5057239715 @default.
- W2968576467 creator A5089380253 @default.
- W2968576467 date "2019-11-01" @default.
- W2968576467 modified "2023-10-15" @default.
- W2968576467 title "Generational biodegradable and regenerative polyphosphazene polymers and their blends with poly (lactic-co-glycolic acid)" @default.
- W2968576467 cites W1578339798 @default.
- W2968576467 cites W1974477870 @default.
- W2968576467 cites W1975352415 @default.
- W2968576467 cites W1975475423 @default.
- W2968576467 cites W1979926873 @default.
- W2968576467 cites W1980183393 @default.
- W2968576467 cites W1980328470 @default.
- W2968576467 cites W1988563308 @default.
- W2968576467 cites W1999880264 @default.
- W2968576467 cites W2002106354 @default.
- W2968576467 cites W2003242105 @default.
- W2968576467 cites W2004490137 @default.
- W2968576467 cites W2005254983 @default.
- W2968576467 cites W2006162395 @default.
- W2968576467 cites W2007247521 @default.
- W2968576467 cites W2008431097 @default.
- W2968576467 cites W2010541659 @default.
- W2968576467 cites W2018568595 @default.
- W2968576467 cites W2019453429 @default.
- W2968576467 cites W2019962291 @default.
- W2968576467 cites W2020179999 @default.
- W2968576467 cites W2027355158 @default.
- W2968576467 cites W2028849323 @default.
- W2968576467 cites W2035441951 @default.
- W2968576467 cites W2035901214 @default.
- W2968576467 cites W2039368461 @default.
- W2968576467 cites W2048331520 @default.
- W2968576467 cites W2060841827 @default.
- W2968576467 cites W2071065697 @default.
- W2968576467 cites W2071820001 @default.
- W2968576467 cites W2073908513 @default.
- W2968576467 cites W2075888419 @default.
- W2968576467 cites W2078611141 @default.
- W2968576467 cites W2080037520 @default.
- W2968576467 cites W2082515652 @default.
- W2968576467 cites W2098005896 @default.
- W2968576467 cites W2101601223 @default.
- W2968576467 cites W2113394462 @default.
- W2968576467 cites W2143198711 @default.
- W2968576467 cites W2150977308 @default.
- W2968576467 cites W2157976579 @default.
- W2968576467 cites W2165512376 @default.
- W2968576467 cites W2166182987 @default.
- W2968576467 cites W2171611347 @default.
- W2968576467 cites W2182742579 @default.
- W2968576467 cites W2299514119 @default.
- W2968576467 cites W2320117023 @default.
- W2968576467 cites W2344033096 @default.
- W2968576467 cites W2424314688 @default.
- W2968576467 cites W2461415855 @default.
- W2968576467 cites W2507500813 @default.
- W2968576467 cites W2582360568 @default.
- W2968576467 cites W2777253741 @default.
- W2968576467 cites W2793249156 @default.
- W2968576467 cites W2884214418 @default.
- W2968576467 cites W2887077005 @default.
- W2968576467 cites W2945755581 @default.
- W2968576467 cites W2949202023 @default.
- W2968576467 cites W2986912763 @default.
- W2968576467 cites W4230675269 @default.
- W2968576467 cites W4238198644 @default.
- W2968576467 doi "https://doi.org/10.1016/j.progpolymsci.2019.101146" @default.
- W2968576467 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6758934" @default.
- W2968576467 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31551636" @default.
- W2968576467 hasPublicationYear "2019" @default.
- W2968576467 type Work @default.
- W2968576467 sameAs 2968576467 @default.
- W2968576467 citedByCount "37" @default.
- W2968576467 countsByYear W29685764672019 @default.
- W2968576467 countsByYear W29685764672020 @default.
- W2968576467 countsByYear W29685764672021 @default.
- W2968576467 countsByYear W29685764672022 @default.
- W2968576467 countsByYear W29685764672023 @default.
- W2968576467 crossrefType "journal-article" @default.
- W2968576467 hasAuthorship W2968576467A5024272228 @default.
- W2968576467 hasAuthorship W2968576467A5057239715 @default.
- W2968576467 hasAuthorship W2968576467A5089380253 @default.
- W2968576467 hasBestOaLocation W29685764672 @default.
- W2968576467 hasConcept C134721988 @default.
- W2968576467 hasConcept C136229726 @default.
- W2968576467 hasConcept C171250308 @default.
- W2968576467 hasConcept C178790620 @default.
- W2968576467 hasConcept C185592680 @default.
- W2968576467 hasConcept C192562407 @default.
- W2968576467 hasConcept C204389451 @default.
- W2968576467 hasConcept C21951064 @default.
- W2968576467 hasConcept C2775920511 @default.
- W2968576467 hasConcept C2779961764 @default.
- W2968576467 hasConcept C2780472526 @default.
- W2968576467 hasConcept C49892992 @default.