Matches in SemOpenAlex for { <https://semopenalex.org/work/W2968582788> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W2968582788 endingPage "15" @default.
- W2968582788 startingPage "9" @default.
- W2968582788 abstract "Position-Specific Scoring Matrix (PSSM) is an excellent feature extraction method that was proposed early in protein classifying prediction, but within the restriction of feature shape in PSSM, researchers make a lot attempts to process it so that PSSM can be input to the traditional machine learning algorithms. These processes drop information provided by PSSM in a way thus the feature representation is limited. Moreover, the high-dimensional feature representation of PSSM makes it incompatible with other feature extraction methods. We use the PSSM as the input of Recurrent Neural Network without any post-processing, the amino acids in protein sequences are regarded as time step in RNN. This way takes full advantage of the information that PSSM provides. In this study, the PSSM is input to the model directly and the internal information of PSSM is fully utilized, we propose an end-to-end solution and achieve state-of-the-art performance. Ultimately, the exploration of how to combine PSSM with traditional feature extraction methods is carried out and achieve slightly improved performance. Our network architecture is implemented in Python and is available at https://github.com/YellowcardD/RNN-for-membrane-protein-types-prediction." @default.
- W2968582788 created "2019-08-22" @default.
- W2968582788 creator A5003996424 @default.
- W2968582788 creator A5009775329 @default.
- W2968582788 creator A5013758739 @default.
- W2968582788 creator A5017535979 @default.
- W2968582788 creator A5040105964 @default.
- W2968582788 date "2019-08-01" @default.
- W2968582788 modified "2023-10-06" @default.
- W2968582788 title "Efficient utilization on PSSM combining with recurrent neural network for membrane protein types prediction" @default.
- W2968582788 cites W1967696966 @default.
- W2968582788 cites W2026710881 @default.
- W2968582788 cites W2036956828 @default.
- W2968582788 cites W2064675550 @default.
- W2968582788 cites W2122554885 @default.
- W2968582788 cites W2124201730 @default.
- W2968582788 cites W2131774270 @default.
- W2968582788 cites W2145957695 @default.
- W2968582788 cites W2153187042 @default.
- W2968582788 cites W2157142295 @default.
- W2968582788 cites W2300852593 @default.
- W2968582788 cites W2566370974 @default.
- W2968582788 cites W2582058293 @default.
- W2968582788 doi "https://doi.org/10.1016/j.compbiolchem.2019.107094" @default.
- W2968582788 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31472418" @default.
- W2968582788 hasPublicationYear "2019" @default.
- W2968582788 type Work @default.
- W2968582788 sameAs 2968582788 @default.
- W2968582788 citedByCount "11" @default.
- W2968582788 countsByYear W29685827882020 @default.
- W2968582788 countsByYear W29685827882021 @default.
- W2968582788 countsByYear W29685827882022 @default.
- W2968582788 countsByYear W29685827882023 @default.
- W2968582788 crossrefType "journal-article" @default.
- W2968582788 hasAuthorship W2968582788A5003996424 @default.
- W2968582788 hasAuthorship W2968582788A5009775329 @default.
- W2968582788 hasAuthorship W2968582788A5013758739 @default.
- W2968582788 hasAuthorship W2968582788A5017535979 @default.
- W2968582788 hasAuthorship W2968582788A5040105964 @default.
- W2968582788 hasConcept C111919701 @default.
- W2968582788 hasConcept C138885662 @default.
- W2968582788 hasConcept C147168706 @default.
- W2968582788 hasConcept C153180895 @default.
- W2968582788 hasConcept C154945302 @default.
- W2968582788 hasConcept C2776401178 @default.
- W2968582788 hasConcept C41008148 @default.
- W2968582788 hasConcept C41895202 @default.
- W2968582788 hasConcept C50644808 @default.
- W2968582788 hasConcept C519991488 @default.
- W2968582788 hasConcept C52622490 @default.
- W2968582788 hasConceptScore W2968582788C111919701 @default.
- W2968582788 hasConceptScore W2968582788C138885662 @default.
- W2968582788 hasConceptScore W2968582788C147168706 @default.
- W2968582788 hasConceptScore W2968582788C153180895 @default.
- W2968582788 hasConceptScore W2968582788C154945302 @default.
- W2968582788 hasConceptScore W2968582788C2776401178 @default.
- W2968582788 hasConceptScore W2968582788C41008148 @default.
- W2968582788 hasConceptScore W2968582788C41895202 @default.
- W2968582788 hasConceptScore W2968582788C50644808 @default.
- W2968582788 hasConceptScore W2968582788C519991488 @default.
- W2968582788 hasConceptScore W2968582788C52622490 @default.
- W2968582788 hasFunder F4320321001 @default.
- W2968582788 hasFunder F4320323193 @default.
- W2968582788 hasLocation W29685827881 @default.
- W2968582788 hasLocation W29685827882 @default.
- W2968582788 hasOpenAccess W2968582788 @default.
- W2968582788 hasPrimaryLocation W29685827881 @default.
- W2968582788 hasRelatedWork W1964120219 @default.
- W2968582788 hasRelatedWork W2000165426 @default.
- W2968582788 hasRelatedWork W2114557664 @default.
- W2968582788 hasRelatedWork W2144059113 @default.
- W2968582788 hasRelatedWork W2146076056 @default.
- W2968582788 hasRelatedWork W2385132419 @default.
- W2968582788 hasRelatedWork W2546942002 @default.
- W2968582788 hasRelatedWork W2772780115 @default.
- W2968582788 hasRelatedWork W2811390910 @default.
- W2968582788 hasRelatedWork W3003836766 @default.
- W2968582788 hasVolume "81" @default.
- W2968582788 isParatext "false" @default.
- W2968582788 isRetracted "false" @default.
- W2968582788 magId "2968582788" @default.
- W2968582788 workType "article" @default.