Matches in SemOpenAlex for { <https://semopenalex.org/work/W2968596670> ?p ?o ?g. }
- W2968596670 abstract "In supervised machine learning, an agent is typically trained once and then deployed. While this works well for static settings, robots often operate in changing environments and must quickly learn new things from data streams. In this paradigm, known as streaming learning, a learner is trained online, in a single pass, from a data stream that cannot be assumed to be independent and identically distributed (iid). Streaming learning will cause conventional deep neural networks (DNNs) to fail for two reasons: 1) they need multiple passes through the entire dataset; and 2) non-iid data will cause catastrophic forgetting. An old fix to both of these issues is rehearsal. To learn a new example, rehearsal mixes it with previous examples, and then this mixture is used to update the DNN. Full rehearsal is slow and memory intensive because it stores all previously observed examples, and its effectiveness for preventing catastrophic forgetting has not been studied in modern DNNs. Here, we describe the ExStream algorithm for memory efficient rehearsal and compare it to alternatives. We find that full rehearsal can eliminate catastrophic forgetting in a variety of streaming learning settings, with ExStream performing well using far less memory and computation." @default.
- W2968596670 created "2019-08-22" @default.
- W2968596670 creator A5030503283 @default.
- W2968596670 creator A5046979072 @default.
- W2968596670 creator A5075373448 @default.
- W2968596670 date "2019-05-01" @default.
- W2968596670 modified "2023-10-10" @default.
- W2968596670 title "Memory Efficient Experience Replay for Streaming Learning" @default.
- W2968596670 cites W1516923404 @default.
- W2968596670 cites W1525647652 @default.
- W2968596670 cites W1543387779 @default.
- W2968596670 cites W1682403713 @default.
- W2968596670 cites W1747560487 @default.
- W2968596670 cites W182707955 @default.
- W2968596670 cites W1971022913 @default.
- W2968596670 cites W1975852288 @default.
- W2968596670 cites W1975898250 @default.
- W2968596670 cites W1979631293 @default.
- W2968596670 cites W1982610692 @default.
- W2968596670 cites W2000454347 @default.
- W2968596670 cites W2006685053 @default.
- W2968596670 cites W2010657328 @default.
- W2968596670 cites W2015857587 @default.
- W2968596670 cites W2016159616 @default.
- W2968596670 cites W2038624061 @default.
- W2968596670 cites W2047057213 @default.
- W2968596670 cites W2060277733 @default.
- W2968596670 cites W2068714596 @default.
- W2968596670 cites W2069816994 @default.
- W2968596670 cites W2075457099 @default.
- W2968596670 cites W2079582948 @default.
- W2968596670 cites W2092335550 @default.
- W2968596670 cites W2093825590 @default.
- W2968596670 cites W2095897464 @default.
- W2968596670 cites W2098409105 @default.
- W2968596670 cites W2099302642 @default.
- W2968596670 cites W2103753221 @default.
- W2968596670 cites W2117487426 @default.
- W2968596670 cites W2117539524 @default.
- W2968596670 cites W2119885577 @default.
- W2968596670 cites W2122838776 @default.
- W2968596670 cites W2123297508 @default.
- W2968596670 cites W212388907 @default.
- W2968596670 cites W2141245797 @default.
- W2968596670 cites W2141559645 @default.
- W2968596670 cites W2143386621 @default.
- W2968596670 cites W2166280719 @default.
- W2968596670 cites W2170936641 @default.
- W2968596670 cites W2194775991 @default.
- W2968596670 cites W2215569344 @default.
- W2968596670 cites W2220402431 @default.
- W2968596670 cites W2343620495 @default.
- W2968596670 cites W2401932923 @default.
- W2968596670 cites W2404779194 @default.
- W2968596670 cites W2560647685 @default.
- W2968596670 cites W2585528949 @default.
- W2968596670 cites W2594880031 @default.
- W2968596670 cites W2594940144 @default.
- W2968596670 cites W2604457090 @default.
- W2968596670 cites W2626498001 @default.
- W2968596670 cites W2794042007 @default.
- W2968596670 cites W28412257 @default.
- W2968596670 cites W2962774976 @default.
- W2968596670 cites W2963798749 @default.
- W2968596670 cites W2964189064 @default.
- W2968596670 cites W3021931813 @default.
- W2968596670 cites W37489049 @default.
- W2968596670 cites W4235130247 @default.
- W2968596670 cites W4244998381 @default.
- W2968596670 doi "https://doi.org/10.1109/icra.2019.8793982" @default.
- W2968596670 hasPublicationYear "2019" @default.
- W2968596670 type Work @default.
- W2968596670 sameAs 2968596670 @default.
- W2968596670 citedByCount "113" @default.
- W2968596670 countsByYear W29685966702018 @default.
- W2968596670 countsByYear W29685966702019 @default.
- W2968596670 countsByYear W29685966702020 @default.
- W2968596670 countsByYear W29685966702021 @default.
- W2968596670 countsByYear W29685966702022 @default.
- W2968596670 countsByYear W29685966702023 @default.
- W2968596670 crossrefType "proceedings-article" @default.
- W2968596670 hasAuthorship W2968596670A5030503283 @default.
- W2968596670 hasAuthorship W2968596670A5046979072 @default.
- W2968596670 hasAuthorship W2968596670A5075373448 @default.
- W2968596670 hasBestOaLocation W29685966702 @default.
- W2968596670 hasConcept C105795698 @default.
- W2968596670 hasConcept C119857082 @default.
- W2968596670 hasConcept C122123141 @default.
- W2968596670 hasConcept C124101348 @default.
- W2968596670 hasConcept C136197465 @default.
- W2968596670 hasConcept C138885662 @default.
- W2968596670 hasConcept C141513077 @default.
- W2968596670 hasConcept C154945302 @default.
- W2968596670 hasConcept C2777611316 @default.
- W2968596670 hasConcept C2778484313 @default.
- W2968596670 hasConcept C33923547 @default.
- W2968596670 hasConcept C41008148 @default.
- W2968596670 hasConcept C41895202 @default.
- W2968596670 hasConcept C50644808 @default.
- W2968596670 hasConcept C7149132 @default.