Matches in SemOpenAlex for { <https://semopenalex.org/work/W2968689095> ?p ?o ?g. }
- W2968689095 abstract "PreviousNext No AccessSEG Technical Program Expanded Abstracts 2019Deep learning for local seismic image processing: Fault detection, structure-oriented smoothing with edge-preserving, and slope estimation by using a single convolutional neural networkAuthors: Xinming WuLuming LiangYunzhi ShiZhicheng GengSergey FomelXinming WuBEG, UT AustinSearch for more papers by this author, Luming LiangMicrosoft Applied Science GroupSearch for more papers by this author, Yunzhi ShiBEG, UT AustinSearch for more papers by this author, Zhicheng GengBEG, UT AustinSearch for more papers by this author, and Sergey FomelBEG, UT AustinSearch for more papers by this authorhttps://doi.org/10.1190/segam2019-3215251.1 SectionsSupplemental MaterialAboutPDF/ePub ToolsAdd to favoritesDownload CitationsTrack CitationsPermissions ShareFacebookTwitterLinked InRedditEmail AbstractThe three seismic image processing tasks of fault detection, structure-oriented smoothing with edge preserving, and slope estimation are related to each other and all involve analyzing seismic structural features. In conventional processing schemes, however, these three tasks are often independently preformed by different algorithms and challenges remain in each of them. We propose to simultaneously perform all the three tasks by using a single convolutional neural network. To train the network, we automatically create thousands of 3D synthetic noisy seismic images and the corresponding ground truth of fault images, clean seismic images, and seismic normal vectors. Although trained with only synthetic datasets, the network automatically learns to accurately perform all the three image processing tasks in a general seismic image. Multiple field examples show that the network is significantly superior to the conventional methods in all the three tasks of computing a more accurate and sharper fault detection, a smoothed seismic volume with better enhanced structures and structural edges, and more accurate reflection slopes.Presentation Date: Monday, September 16, 2019Session Start Time: 1:50 PMPresentation Time: 4:45 PMLocation: 221DPresentation Type: OralKeywords: interpretation, artificial intelligence, machine learning, faults, seismic attributesPermalink: https://doi.org/10.1190/segam2019-3215251.1FiguresReferencesRelatedDetailsCited byAbsolute acoustic impedance inversion using convolutional neural networks with transfer learningShaoyong Liu, Wenjun Ni, Wenqian Fang, and Lihua Fu2 February 2023 | GEOPHYSICS, Vol. 88, No. 2An Intelligent MT Data Inversion Method With Seismic Attribute EnhancementIEEE Transactions on Geoscience and Remote Sensing, Vol. 61Joint use of multiseismic information for lithofacies prediction via supervised convolutional neural networksMinghui Xu, Luanxiao Zhao, Shunli Gao, Xuanying Zhu, and Jianhua Geng1 July 2022 | GEOPHYSICS, Vol. 87, No. 5A MATLAB code package for 2D/3D local slope estimation and structural filteringHang Wang, Yunfeng Chen, Omar M. Saad, Wei Chen, Yapo Abolé Serge Innocent Oboué, Liuqing Yang, Sergey Fomel, and Yangkang Chen3 March 2022 | GEOPHYSICS, Vol. 87, No. 3Acoustic impedance inversion using convolutional neural network with transfer learningShaoyong Liu, Wenjun Ni, Wenqian Fang, and Lihua Fu24 February 2022Concealed-Fault Detection in Low-Amplitude Tectonic Area—An Example of Tight Sandstone Reservoirs13 October 2021 | Minerals, Vol. 11, No. 10Deep Relative Geologic Time: A Deep Learning Method for Simultaneously Interpreting 3‐D Seismic Horizons and Faults12 September 2021 | Journal of Geophysical Research: Solid Earth, Vol. 126, No. 9Self-supervised learning for low frequency extension of seismic dataMeixia Wang, Sheng Xu, and Hongbo Zhou30 September 2020 SEG Technical Program Expanded Abstracts 2019ISSN (print):1052-3812 ISSN (online):1949-4645Copyright: 2019 Pages: 5407 publication data© 2019 Published in electronic format with permission by the Society of Exploration GeophysicistsPublisher:Society of Exploration Geophysicists HistoryPublished Online: 10 Aug 2019 CITATION INFORMATION Xinming Wu, Luming Liang, Yunzhi Shi, Zhicheng Geng, and Sergey Fomel, (2019), Deep learning for local seismic image processing: Fault detection, structure-oriented smoothing with edge-preserving, and slope estimation by using a single convolutional neural network, SEG Technical Program Expanded Abstracts : 2222-2226. https://doi.org/10.1190/segam2019-3215251.1 Plain-Language Summary Keywordsinterpretationartificial intelligencemachine learningfaultsseismic attributesPDF DownloadLoading ..." @default.
- W2968689095 created "2019-08-22" @default.
- W2968689095 creator A5000470385 @default.
- W2968689095 creator A5005237932 @default.
- W2968689095 creator A5051505252 @default.
- W2968689095 creator A5058640298 @default.
- W2968689095 creator A5091058254 @default.
- W2968689095 date "2019-08-10" @default.
- W2968689095 modified "2023-09-27" @default.
- W2968689095 title "Deep learning for local seismic image processing: Fault detection, structure-oriented smoothing with edge-preserving, and slope estimation by using a single convolutional neural network" @default.
- W2968689095 cites W1901129140 @default.
- W2968689095 cites W1975018755 @default.
- W2968689095 cites W2025886468 @default.
- W2968689095 cites W2079277635 @default.
- W2968689095 cites W2106921281 @default.
- W2968689095 cites W2107127511 @default.
- W2968689095 cites W2107308393 @default.
- W2968689095 cites W2116369243 @default.
- W2968689095 cites W2118701387 @default.
- W2968689095 cites W2126097500 @default.
- W2968689095 cites W2129086878 @default.
- W2968689095 cites W2129793631 @default.
- W2968689095 cites W2139663179 @default.
- W2968689095 cites W2140178321 @default.
- W2968689095 cites W2142323512 @default.
- W2968689095 cites W2257503115 @default.
- W2968689095 cites W2287473451 @default.
- W2968689095 cites W2313422898 @default.
- W2968689095 cites W2588053692 @default.
- W2968689095 cites W2592266704 @default.
- W2968689095 cites W2613245639 @default.
- W2968689095 cites W2616167073 @default.
- W2968689095 cites W2708728779 @default.
- W2968689095 cites W2774014017 @default.
- W2968689095 cites W2802007045 @default.
- W2968689095 cites W2805155846 @default.
- W2968689095 cites W2890872243 @default.
- W2968689095 cites W2895663205 @default.
- W2968689095 cites W2968304071 @default.
- W2968689095 cites W4248461486 @default.
- W2968689095 cites W4251868378 @default.
- W2968689095 cites W845365781 @default.
- W2968689095 doi "https://doi.org/10.1190/segam2019-3215251.1" @default.
- W2968689095 hasPublicationYear "2019" @default.
- W2968689095 type Work @default.
- W2968689095 sameAs 2968689095 @default.
- W2968689095 citedByCount "9" @default.
- W2968689095 countsByYear W29686890952020 @default.
- W2968689095 countsByYear W29686890952021 @default.
- W2968689095 countsByYear W29686890952022 @default.
- W2968689095 countsByYear W29686890952023 @default.
- W2968689095 crossrefType "proceedings-article" @default.
- W2968689095 hasAuthorship W2968689095A5000470385 @default.
- W2968689095 hasAuthorship W2968689095A5005237932 @default.
- W2968689095 hasAuthorship W2968689095A5051505252 @default.
- W2968689095 hasAuthorship W2968689095A5058640298 @default.
- W2968689095 hasAuthorship W2968689095A5091058254 @default.
- W2968689095 hasConcept C108583219 @default.
- W2968689095 hasConcept C115961682 @default.
- W2968689095 hasConcept C127313418 @default.
- W2968689095 hasConcept C146849305 @default.
- W2968689095 hasConcept C153180895 @default.
- W2968689095 hasConcept C154945302 @default.
- W2968689095 hasConcept C162307627 @default.
- W2968689095 hasConcept C165205528 @default.
- W2968689095 hasConcept C175551986 @default.
- W2968689095 hasConcept C193536780 @default.
- W2968689095 hasConcept C31972630 @default.
- W2968689095 hasConcept C3770464 @default.
- W2968689095 hasConcept C41008148 @default.
- W2968689095 hasConcept C50644808 @default.
- W2968689095 hasConcept C81363708 @default.
- W2968689095 hasConcept C9417928 @default.
- W2968689095 hasConceptScore W2968689095C108583219 @default.
- W2968689095 hasConceptScore W2968689095C115961682 @default.
- W2968689095 hasConceptScore W2968689095C127313418 @default.
- W2968689095 hasConceptScore W2968689095C146849305 @default.
- W2968689095 hasConceptScore W2968689095C153180895 @default.
- W2968689095 hasConceptScore W2968689095C154945302 @default.
- W2968689095 hasConceptScore W2968689095C162307627 @default.
- W2968689095 hasConceptScore W2968689095C165205528 @default.
- W2968689095 hasConceptScore W2968689095C175551986 @default.
- W2968689095 hasConceptScore W2968689095C193536780 @default.
- W2968689095 hasConceptScore W2968689095C31972630 @default.
- W2968689095 hasConceptScore W2968689095C3770464 @default.
- W2968689095 hasConceptScore W2968689095C41008148 @default.
- W2968689095 hasConceptScore W2968689095C50644808 @default.
- W2968689095 hasConceptScore W2968689095C81363708 @default.
- W2968689095 hasConceptScore W2968689095C9417928 @default.
- W2968689095 hasLocation W29686890951 @default.
- W2968689095 hasOpenAccess W2968689095 @default.
- W2968689095 hasPrimaryLocation W29686890951 @default.
- W2968689095 hasRelatedWork W2549299049 @default.
- W2968689095 hasRelatedWork W2731899572 @default.
- W2968689095 hasRelatedWork W2999805992 @default.
- W2968689095 hasRelatedWork W3011074480 @default.
- W2968689095 hasRelatedWork W3116150086 @default.
- W2968689095 hasRelatedWork W3133861977 @default.
- W2968689095 hasRelatedWork W4200173597 @default.
- W2968689095 hasRelatedWork W4291897433 @default.