Matches in SemOpenAlex for { <https://semopenalex.org/work/W2968689990> ?p ?o ?g. }
- W2968689990 abstract "Logistic regression is a widely used statistical method in data analysis and machine learning. When the capacity of data is large, it is time-consuming and even infeasible to perform big data machine learning using the traditional approach. Therefore, it is crucial to come up with an efficient way to evaluate feature combinations and update learning models. With the approach proposed by Yang, Wang, Xu, and Zhang (2018) a system can be represented using small enough matrices, which can be hosted in memory. These working sufficient statistics matrices can be applied in updating models in logistic regression. This study applies the working sufficient statistics approach in logistic regression machine learning to examine how this new method improves the performance. This study investigated the difference between the performance of this new working sufficient statistics approach and performance of the traditional approach on Sparkrq s machine learning package. The experiments showed that the working sufficient statistics method could improve the performance of training the logistic regression models when the input size was large." @default.
- W2968689990 created "2019-08-22" @default.
- W2968689990 creator A5086620545 @default.
- W2968689990 date "2019-08-13" @default.
- W2968689990 modified "2023-09-27" @default.
- W2968689990 title "Using a Scalable Feature Selection Approach For Big Data Regressions" @default.
- W2968689990 cites W1117743625 @default.
- W2968689990 cites W1494137514 @default.
- W2968689990 cites W1570448133 @default.
- W2968689990 cites W1578389446 @default.
- W2968689990 cites W1592785605 @default.
- W2968689990 cites W2015536388 @default.
- W2968689990 cites W2029500477 @default.
- W2968689990 cites W2030452017 @default.
- W2968689990 cites W2095178814 @default.
- W2968689990 cites W2097839764 @default.
- W2968689990 cites W2098133322 @default.
- W2968689990 cites W2119479037 @default.
- W2968689990 cites W2119511382 @default.
- W2968689990 cites W2123024445 @default.
- W2968689990 cites W2131715540 @default.
- W2968689990 cites W2131975293 @default.
- W2968689990 cites W2147768505 @default.
- W2968689990 cites W2181470043 @default.
- W2968689990 cites W2189465200 @default.
- W2968689990 cites W2330864775 @default.
- W2968689990 cites W2416799949 @default.
- W2968689990 cites W2487200295 @default.
- W2968689990 cites W2487770199 @default.
- W2968689990 cites W2561145518 @default.
- W2968689990 cites W2568772110 @default.
- W2968689990 cites W2883543619 @default.
- W2968689990 cites W2914810015 @default.
- W2968689990 cites W2963288913 @default.
- W2968689990 cites W298212978 @default.
- W2968689990 cites W652265168 @default.
- W2968689990 cites W64269816 @default.
- W2968689990 doi "https://doi.org/10.25394/pgs.8796893.v1" @default.
- W2968689990 hasPublicationYear "2019" @default.
- W2968689990 type Work @default.
- W2968689990 sameAs 2968689990 @default.
- W2968689990 citedByCount "0" @default.
- W2968689990 crossrefType "dissertation" @default.
- W2968689990 hasAuthorship W2968689990A5086620545 @default.
- W2968689990 hasConcept C105795698 @default.
- W2968689990 hasConcept C119857082 @default.
- W2968689990 hasConcept C124101348 @default.
- W2968689990 hasConcept C138885662 @default.
- W2968689990 hasConcept C148483581 @default.
- W2968689990 hasConcept C151956035 @default.
- W2968689990 hasConcept C154945302 @default.
- W2968689990 hasConcept C199360897 @default.
- W2968689990 hasConcept C2776401178 @default.
- W2968689990 hasConcept C2781215313 @default.
- W2968689990 hasConcept C33923547 @default.
- W2968689990 hasConcept C41008148 @default.
- W2968689990 hasConcept C41895202 @default.
- W2968689990 hasConcept C61722155 @default.
- W2968689990 hasConcept C75684735 @default.
- W2968689990 hasConcept C83546350 @default.
- W2968689990 hasConceptScore W2968689990C105795698 @default.
- W2968689990 hasConceptScore W2968689990C119857082 @default.
- W2968689990 hasConceptScore W2968689990C124101348 @default.
- W2968689990 hasConceptScore W2968689990C138885662 @default.
- W2968689990 hasConceptScore W2968689990C148483581 @default.
- W2968689990 hasConceptScore W2968689990C151956035 @default.
- W2968689990 hasConceptScore W2968689990C154945302 @default.
- W2968689990 hasConceptScore W2968689990C199360897 @default.
- W2968689990 hasConceptScore W2968689990C2776401178 @default.
- W2968689990 hasConceptScore W2968689990C2781215313 @default.
- W2968689990 hasConceptScore W2968689990C33923547 @default.
- W2968689990 hasConceptScore W2968689990C41008148 @default.
- W2968689990 hasConceptScore W2968689990C41895202 @default.
- W2968689990 hasConceptScore W2968689990C61722155 @default.
- W2968689990 hasConceptScore W2968689990C75684735 @default.
- W2968689990 hasConceptScore W2968689990C83546350 @default.
- W2968689990 hasLocation W29686899901 @default.
- W2968689990 hasOpenAccess W2968689990 @default.
- W2968689990 hasPrimaryLocation W29686899901 @default.
- W2968689990 hasRelatedWork W1485433433 @default.
- W2968689990 hasRelatedWork W1564996009 @default.
- W2968689990 hasRelatedWork W1832039926 @default.
- W2968689990 hasRelatedWork W1991713690 @default.
- W2968689990 hasRelatedWork W2007563768 @default.
- W2968689990 hasRelatedWork W2062106211 @default.
- W2968689990 hasRelatedWork W2101399145 @default.
- W2968689990 hasRelatedWork W2118417438 @default.
- W2968689990 hasRelatedWork W2126353769 @default.
- W2968689990 hasRelatedWork W2136844486 @default.
- W2968689990 hasRelatedWork W2145328215 @default.
- W2968689990 hasRelatedWork W2532179056 @default.
- W2968689990 hasRelatedWork W2754811960 @default.
- W2968689990 hasRelatedWork W2772748224 @default.
- W2968689990 hasRelatedWork W2810910993 @default.
- W2968689990 hasRelatedWork W2892674788 @default.
- W2968689990 hasRelatedWork W2914810015 @default.
- W2968689990 hasRelatedWork W3016328096 @default.
- W2968689990 hasRelatedWork W3043437699 @default.
- W2968689990 hasRelatedWork W3195819422 @default.
- W2968689990 isParatext "false" @default.