Matches in SemOpenAlex for { <https://semopenalex.org/work/W2968692945> ?p ?o ?g. }
- W2968692945 endingPage "65" @default.
- W2968692945 startingPage "1" @default.
- W2968692945 abstract "Compressed sensing and many research activities associated with it can be seen as a framework for signal processing of low-complexity structures. A cornerstone of the underlying theory is the study of inverse problems with linear or nonlinear measurements. Whether it is sparsity, low-rankness, or other familiar notions of low complexity, the theory addresses necessary and sufficient conditions behind the measurement process to guarantee signal reconstruction with efficient algorithms. This includes consideration of robustness to measurement noise and stability with respect to signal model inaccuracies. This introduction aims to provide an overall view of some of the most important results in this direction. After discussing various examples of low-complexity signal models, two approaches to linear inverse problems are introduced which, respectively, focus on the recovery of individual signals and recovery of all low-complexity signals simultaneously. In particular, we focus on the former setting, giving rise to so-called nonuniform signal recovery problems. We discuss different necessary and sufficient conditions for stable and robust signal reconstruction using convex optimization methods. Appealing to concepts from non-asymptotic random matrix theory, we outline how certain classes of random sensing matrices, which fully govern the measurement process, satisfy certain sufficient conditions for signal recovery. Finally, we review some of the most prominent algorithms for signal recovery proposed in the literature." @default.
- W2968692945 created "2019-08-22" @default.
- W2968692945 creator A5055278195 @default.
- W2968692945 creator A5066277118 @default.
- W2968692945 creator A5083706779 @default.
- W2968692945 date "2019-01-01" @default.
- W2968692945 modified "2023-09-26" @default.
- W2968692945 title "An Introduction to Compressed Sensing" @default.
- W2968692945 cites W122561819 @default.
- W2968692945 cites W143004564 @default.
- W2968692945 cites W1599545414 @default.
- W2968692945 cites W1620362451 @default.
- W2968692945 cites W1961240022 @default.
- W2968692945 cites W1966553486 @default.
- W2968692945 cites W1991532656 @default.
- W2968692945 cites W2003217181 @default.
- W2968692945 cites W2015418199 @default.
- W2968692945 cites W2020390700 @default.
- W2968692945 cites W2020842312 @default.
- W2968692945 cites W2025223969 @default.
- W2968692945 cites W2028191993 @default.
- W2968692945 cites W2028781966 @default.
- W2968692945 cites W2030449718 @default.
- W2968692945 cites W2045748842 @default.
- W2968692945 cites W2055064119 @default.
- W2968692945 cites W2066544664 @default.
- W2968692945 cites W2069912449 @default.
- W2968692945 cites W2082029531 @default.
- W2968692945 cites W2083042020 @default.
- W2968692945 cites W2088658556 @default.
- W2968692945 cites W2097323375 @default.
- W2968692945 cites W2100556411 @default.
- W2968692945 cites W2103539935 @default.
- W2968692945 cites W2105877514 @default.
- W2968692945 cites W2109042516 @default.
- W2968692945 cites W2114129195 @default.
- W2968692945 cites W2116148865 @default.
- W2968692945 cites W2117790027 @default.
- W2968692945 cites W2121716262 @default.
- W2968692945 cites W2122340891 @default.
- W2968692945 cites W2126607811 @default.
- W2968692945 cites W2129131372 @default.
- W2968692945 cites W2129638195 @default.
- W2968692945 cites W2129812935 @default.
- W2968692945 cites W2138473013 @default.
- W2968692945 cites W2138548210 @default.
- W2968692945 cites W2140514146 @default.
- W2968692945 cites W2141433180 @default.
- W2968692945 cites W2144006746 @default.
- W2968692945 cites W2145096794 @default.
- W2968692945 cites W2152204644 @default.
- W2968692945 cites W2154332973 @default.
- W2968692945 cites W2160122636 @default.
- W2968692945 cites W2160979406 @default.
- W2968692945 cites W2164452299 @default.
- W2968692945 cites W2166670884 @default.
- W2968692945 cites W2288884963 @default.
- W2968692945 cites W2395430402 @default.
- W2968692945 cites W2486545612 @default.
- W2968692945 cites W2565293665 @default.
- W2968692945 cites W2569444610 @default.
- W2968692945 cites W2736618363 @default.
- W2968692945 cites W2962829740 @default.
- W2968692945 cites W2963062473 @default.
- W2968692945 cites W2963676935 @default.
- W2968692945 cites W2964047892 @default.
- W2968692945 cites W2964322027 @default.
- W2968692945 cites W2965497096 @default.
- W2968692945 cites W3098520355 @default.
- W2968692945 cites W3101762025 @default.
- W2968692945 cites W3103542348 @default.
- W2968692945 cites W3103827634 @default.
- W2968692945 cites W3105023213 @default.
- W2968692945 cites W3124114587 @default.
- W2968692945 cites W3124617746 @default.
- W2968692945 cites W417781317 @default.
- W2968692945 cites W4205390861 @default.
- W2968692945 cites W4210665207 @default.
- W2968692945 cites W4231428347 @default.
- W2968692945 cites W4244393449 @default.
- W2968692945 cites W4247341659 @default.
- W2968692945 cites W4250589301 @default.
- W2968692945 cites W4250955649 @default.
- W2968692945 cites W4290998531 @default.
- W2968692945 cites W4300634415 @default.
- W2968692945 cites W641843003 @default.
- W2968692945 cites W648260396 @default.
- W2968692945 cites W74946117 @default.
- W2968692945 doi "https://doi.org/10.1007/978-3-319-73074-5_1" @default.
- W2968692945 hasPublicationYear "2019" @default.
- W2968692945 type Work @default.
- W2968692945 sameAs 2968692945 @default.
- W2968692945 citedByCount "2" @default.
- W2968692945 countsByYear W29686929452021 @default.
- W2968692945 countsByYear W29686929452022 @default.
- W2968692945 crossrefType "book-chapter" @default.
- W2968692945 hasAuthorship W2968692945A5055278195 @default.
- W2968692945 hasAuthorship W2968692945A5066277118 @default.