Matches in SemOpenAlex for { <https://semopenalex.org/work/W2968695936> ?p ?o ?g. }
- W2968695936 endingPage "112578" @default.
- W2968695936 startingPage "112578" @default.
- W2968695936 abstract "Originally, Isogeometric Analysis is aimed at using geometric models for the structural analysis. The actual realization of this objective to complex real-world structures requires a special treatment of the non-conformities between the patches generated during the geometric modeling. Different advanced numerical tools now enable to analyze elaborated multipatch models, especially regarding the imposition of the interface coupling conditions. However, in order to push forward the isogeometric concept, a closer look at the algorithm of resolution for multipatch geometries seems crucial. Hence, we present a dual Domain Decomposition algorithm for accurately analyzing non-conforming multipatch Kirchhoff–Love shells. The starting point is the use of a Mortar method for imposing the coupling conditions between the shells. The additional degrees of freedom coming from the Lagrange multiplier field enable to formulate an interface problem, known as the one-level FETI problem. The interface problem is solved using an iterative solver where, at each iteration, only local quantities defined at the patch level (i.e. per sub-domain) are involved which makes the overall algorithm naturally parallelizable. We study the preconditioning step in order to get an algorithm which is numerically scalable. Several examples ranging from simple benchmark cases to semi-industrial problems highlight the great potential of the method." @default.
- W2968695936 created "2019-08-22" @default.
- W2968695936 creator A5005187572 @default.
- W2968695936 creator A5014831913 @default.
- W2968695936 creator A5041853269 @default.
- W2968695936 creator A5047108256 @default.
- W2968695936 creator A5062908337 @default.
- W2968695936 creator A5069998386 @default.
- W2968695936 date "2019-12-01" @default.
- W2968695936 modified "2023-10-10" @default.
- W2968695936 title "A dual domain decomposition algorithm for the analysis of non-conforming isogeometric Kirchhoff–Love shells" @default.
- W2968695936 cites W1523837500 @default.
- W2968695936 cites W1971812145 @default.
- W2968695936 cites W1973573732 @default.
- W2968695936 cites W1976752666 @default.
- W2968695936 cites W1980220299 @default.
- W2968695936 cites W1995279705 @default.
- W2968695936 cites W1998777442 @default.
- W2968695936 cites W2000425991 @default.
- W2968695936 cites W2003001332 @default.
- W2968695936 cites W2005390260 @default.
- W2968695936 cites W2005423095 @default.
- W2968695936 cites W2009042773 @default.
- W2968695936 cites W2019982726 @default.
- W2968695936 cites W2028482426 @default.
- W2968695936 cites W2037832437 @default.
- W2968695936 cites W2051362961 @default.
- W2968695936 cites W2053113138 @default.
- W2968695936 cites W2054935900 @default.
- W2968695936 cites W2067516969 @default.
- W2968695936 cites W2068663505 @default.
- W2968695936 cites W2086361428 @default.
- W2968695936 cites W2086989960 @default.
- W2968695936 cites W2092836554 @default.
- W2968695936 cites W2105721572 @default.
- W2968695936 cites W2117127065 @default.
- W2968695936 cites W2134785513 @default.
- W2968695936 cites W2135494005 @default.
- W2968695936 cites W2139172930 @default.
- W2968695936 cites W2140639233 @default.
- W2968695936 cites W2144673432 @default.
- W2968695936 cites W2173025883 @default.
- W2968695936 cites W2230702385 @default.
- W2968695936 cites W2231957864 @default.
- W2968695936 cites W231052996 @default.
- W2968695936 cites W2416623228 @default.
- W2968695936 cites W2471856754 @default.
- W2968695936 cites W2477238223 @default.
- W2968695936 cites W2502813114 @default.
- W2968695936 cites W2528433663 @default.
- W2968695936 cites W2561347431 @default.
- W2968695936 cites W2566114516 @default.
- W2968695936 cites W2606400375 @default.
- W2968695936 cites W2621368410 @default.
- W2968695936 cites W2736420996 @default.
- W2968695936 cites W2740634356 @default.
- W2968695936 cites W2767669984 @default.
- W2968695936 cites W2792512438 @default.
- W2968695936 cites W2805637102 @default.
- W2968695936 cites W2807136031 @default.
- W2968695936 cites W2809918478 @default.
- W2968695936 cites W2811386183 @default.
- W2968695936 cites W2884652962 @default.
- W2968695936 cites W2898442466 @default.
- W2968695936 cites W2909943067 @default.
- W2968695936 cites W2915639325 @default.
- W2968695936 cites W2919602581 @default.
- W2968695936 cites W2922320571 @default.
- W2968695936 cites W2922815491 @default.
- W2968695936 cites W3125462232 @default.
- W2968695936 cites W940722688 @default.
- W2968695936 doi "https://doi.org/10.1016/j.cma.2019.112578" @default.
- W2968695936 hasPublicationYear "2019" @default.
- W2968695936 type Work @default.
- W2968695936 sameAs 2968695936 @default.
- W2968695936 citedByCount "13" @default.
- W2968695936 countsByYear W29686959362020 @default.
- W2968695936 countsByYear W29686959362021 @default.
- W2968695936 countsByYear W29686959362022 @default.
- W2968695936 countsByYear W29686959362023 @default.
- W2968695936 crossrefType "journal-article" @default.
- W2968695936 hasAuthorship W2968695936A5005187572 @default.
- W2968695936 hasAuthorship W2968695936A5014831913 @default.
- W2968695936 hasAuthorship W2968695936A5041853269 @default.
- W2968695936 hasAuthorship W2968695936A5047108256 @default.
- W2968695936 hasAuthorship W2968695936A5062908337 @default.
- W2968695936 hasAuthorship W2968695936A5069998386 @default.
- W2968695936 hasBestOaLocation W29686959361 @default.
- W2968695936 hasConcept C113843644 @default.
- W2968695936 hasConcept C11413529 @default.
- W2968695936 hasConcept C126255220 @default.
- W2968695936 hasConcept C127413603 @default.
- W2968695936 hasConcept C129307140 @default.
- W2968695936 hasConcept C135628077 @default.
- W2968695936 hasConcept C157915830 @default.
- W2968695936 hasConcept C171609451 @default.
- W2968695936 hasConcept C173608175 @default.
- W2968695936 hasConcept C198880260 @default.