Matches in SemOpenAlex for { <https://semopenalex.org/work/W2968698091> ?p ?o ?g. }
- W2968698091 endingPage "20190224" @default.
- W2968698091 startingPage "20190224" @default.
- W2968698091 abstract "Disease emergence events, epidemics and pandemics all underscore the need to predict zoonotic pathogen spillover. Because cross-species transmission is inherently hierarchical, involving processes that occur at varying levels of biological organization, such predictive efforts can be complicated by the many scales and vastness of data potentially required for forecasting. A wide range of approaches are currently used to forecast spillover risk (e.g. macroecology, pathogen discovery, surveillance of human populations, among others), each of which is bound within particular phylogenetic, spatial and temporal scales of prediction. Here, we contextualize these diverse approaches within their forecasting goals and resulting scales of prediction to illustrate critical areas of conceptual and pragmatic overlap. Specifically, we focus on an ecological perspective to envision a research pipeline that connects these different scales of data and predictions from the aims of discovery to intervention. Pathogen discovery and predictions focused at the phylogenetic scale can first provide coarse and pattern-based guidance for which reservoirs, vectors and pathogens are likely to be involved in spillover, thereby narrowing surveillance targets and where such efforts should be conducted. Next, these predictions can be followed with ecologically driven spatio-temporal studies of reservoirs and vectors to quantify spatio-temporal fluctuations in infection and to mechanistically understand how pathogens circulate and are transmitted to humans. This approach can also help identify general regions and periods for which spillover is most likely. We illustrate this point by highlighting several case studies where long-term, ecologically focused studies (e.g. Lyme disease in the northeast USA, Hendra virus in eastern Australia, Plasmodium knowlesi in Southeast Asia) have facilitated predicting spillover in space and time and facilitated the design of possible intervention strategies. Such studies can in turn help narrow human surveillance efforts and help refine and improve future large-scale, phylogenetic predictions. We conclude by discussing how greater integration and exchange between data and predictions generated across these varying scales could ultimately help generate more actionable forecasts and interventions. This article is part of the theme issue 'Dynamic and integrative approaches to understanding pathogen spillover'." @default.
- W2968698091 created "2019-08-22" @default.
- W2968698091 creator A5000112358 @default.
- W2968698091 creator A5001484169 @default.
- W2968698091 creator A5015270846 @default.
- W2968698091 creator A5034076461 @default.
- W2968698091 creator A5044568003 @default.
- W2968698091 date "2019-08-12" @default.
- W2968698091 modified "2023-10-14" @default.
- W2968698091 title "The problem of scale in the prediction and management of pathogen spillover" @default.
- W2968698091 cites W1917173555 @default.
- W2968698091 cites W1958730806 @default.
- W2968698091 cites W1982571980 @default.
- W2968698091 cites W1993989538 @default.
- W2968698091 cites W1995320511 @default.
- W2968698091 cites W2008065249 @default.
- W2968698091 cites W2008491535 @default.
- W2968698091 cites W2012706326 @default.
- W2968698091 cites W2025753670 @default.
- W2968698091 cites W2027968540 @default.
- W2968698091 cites W2040766929 @default.
- W2968698091 cites W2042641463 @default.
- W2968698091 cites W2052708490 @default.
- W2968698091 cites W2072668906 @default.
- W2968698091 cites W2076620790 @default.
- W2968698091 cites W2096136553 @default.
- W2968698091 cites W2096794841 @default.
- W2968698091 cites W2098459942 @default.
- W2968698091 cites W2102790386 @default.
- W2968698091 cites W2107049284 @default.
- W2968698091 cites W2112054009 @default.
- W2968698091 cites W2117929601 @default.
- W2968698091 cites W2121253068 @default.
- W2968698091 cites W2125834258 @default.
- W2968698091 cites W2127435093 @default.
- W2968698091 cites W2131851182 @default.
- W2968698091 cites W2133724824 @default.
- W2968698091 cites W2152348611 @default.
- W2968698091 cites W2157475700 @default.
- W2968698091 cites W2163423322 @default.
- W2968698091 cites W2167713445 @default.
- W2968698091 cites W2173294776 @default.
- W2968698091 cites W2183453669 @default.
- W2968698091 cites W2195335829 @default.
- W2968698091 cites W2228451282 @default.
- W2968698091 cites W2235133578 @default.
- W2968698091 cites W2260741209 @default.
- W2968698091 cites W2306323185 @default.
- W2968698091 cites W2322480672 @default.
- W2968698091 cites W2334375756 @default.
- W2968698091 cites W2386961963 @default.
- W2968698091 cites W2444422412 @default.
- W2968698091 cites W2467600727 @default.
- W2968698091 cites W2472069494 @default.
- W2968698091 cites W2523258504 @default.
- W2968698091 cites W2581068562 @default.
- W2968698091 cites W2603965627 @default.
- W2968698091 cites W2618653913 @default.
- W2968698091 cites W2624238704 @default.
- W2968698091 cites W2700382303 @default.
- W2968698091 cites W2725900963 @default.
- W2968698091 cites W2736004716 @default.
- W2968698091 cites W2751834231 @default.
- W2968698091 cites W2758998194 @default.
- W2968698091 cites W2767318416 @default.
- W2968698091 cites W2767579289 @default.
- W2968698091 cites W2785723861 @default.
- W2968698091 cites W2788045019 @default.
- W2968698091 cites W2792186087 @default.
- W2968698091 cites W2801415649 @default.
- W2968698091 cites W2807251817 @default.
- W2968698091 cites W2808297465 @default.
- W2968698091 cites W2887902729 @default.
- W2968698091 cites W2888346070 @default.
- W2968698091 cites W2888405234 @default.
- W2968698091 cites W2898880642 @default.
- W2968698091 cites W2899317755 @default.
- W2968698091 cites W2900185100 @default.
- W2968698091 cites W2902249445 @default.
- W2968698091 cites W2911197684 @default.
- W2968698091 cites W2922945367 @default.
- W2968698091 cites W2949930978 @default.
- W2968698091 cites W2950067305 @default.
- W2968698091 cites W2952432726 @default.
- W2968698091 cites W2955779796 @default.
- W2968698091 cites W2967006879 @default.
- W2968698091 cites W2967256707 @default.
- W2968698091 cites W2967264381 @default.
- W2968698091 cites W2967439306 @default.
- W2968698091 cites W2967732366 @default.
- W2968698091 cites W2967939981 @default.
- W2968698091 cites W2968392911 @default.
- W2968698091 cites W2968898132 @default.
- W2968698091 cites W2995568800 @default.
- W2968698091 cites W4250310729 @default.
- W2968698091 doi "https://doi.org/10.1098/rstb.2019.0224" @default.
- W2968698091 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6711304" @default.
- W2968698091 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31401958" @default.