Matches in SemOpenAlex for { <https://semopenalex.org/work/W2968701121> ?p ?o ?g. }
- W2968701121 endingPage "2029" @default.
- W2968701121 startingPage "2006" @default.
- W2968701121 abstract "Purpose Feature space heterogeneity exists widely in various application fields of classification techniques, such as customs inspection decision, credit scoring and medical diagnosis. This paper aims to study the relationship between feature space heterogeneity and classification performance. Design/methodology/approach A measurement is first developed for measuring and identifying any significant heterogeneity that exists in the feature space of a data set. The main idea of this measurement is derived from a meta-analysis. For the data set with significant feature space heterogeneity, a classification algorithm based on factor analysis and clustering is proposed to learn the data patterns, which, in turn, are used for data classification. Findings The proposed approach has two main advantages over the previous methods. The first advantage lies in feature transform using orthogonal factor analysis, which results in new features without redundancy and irrelevance. The second advantage rests on samples partitioning to capture the feature space heterogeneity reflected by differences of factor scores. The validity and effectiveness of the proposed approach is verified on a number of benchmarking data sets. Research limitations/implications Measurement should be used to guide the heterogeneity elimination process, which is an interesting topic in future research. In addition, to develop a classification algorithm that enables scalable and incremental learning for large data sets with significant feature space heterogeneity is also an important issue. Practical implications Measuring and eliminating the feature space heterogeneity possibly existing in the data are important for accurate classification. This study provides a systematical approach to feature space heterogeneity measurement and elimination for better classification performance, which is favorable for applications of classification techniques in real-word problems. Originality/value A measurement based on meta-analysis for measuring and identifying any significant feature space heterogeneity in a classification problem is developed, and an ensemble classification framework is proposed to deal with the feature space heterogeneity and improve the classification accuracy." @default.
- W2968701121 created "2019-08-22" @default.
- W2968701121 creator A5009989858 @default.
- W2968701121 creator A5034507166 @default.
- W2968701121 date "2019-10-07" @default.
- W2968701121 modified "2023-10-16" @default.
- W2968701121 title "A systematical approach to classification problems with feature space heterogeneity" @default.
- W2968701121 cites W1171650066 @default.
- W2968701121 cites W15277881 @default.
- W2968701121 cites W1578460509 @default.
- W2968701121 cites W1964605289 @default.
- W2968701121 cites W1978842471 @default.
- W2968701121 cites W1992942172 @default.
- W2968701121 cites W2010877333 @default.
- W2968701121 cites W2011694392 @default.
- W2968701121 cites W2023779506 @default.
- W2968701121 cites W2027283400 @default.
- W2968701121 cites W2052268454 @default.
- W2968701121 cites W2058312826 @default.
- W2968701121 cites W2084961599 @default.
- W2968701121 cites W2091632079 @default.
- W2968701121 cites W2092682490 @default.
- W2968701121 cites W2103027218 @default.
- W2968701121 cites W2103705607 @default.
- W2968701121 cites W2112229161 @default.
- W2968701121 cites W2112885721 @default.
- W2968701121 cites W2113242816 @default.
- W2968701121 cites W2117200377 @default.
- W2968701121 cites W2126930838 @default.
- W2968701121 cites W2137686028 @default.
- W2968701121 cites W2160105276 @default.
- W2968701121 cites W2161147823 @default.
- W2968701121 cites W2163693992 @default.
- W2968701121 cites W2305027949 @default.
- W2968701121 cites W2315123323 @default.
- W2968701121 cites W2514634521 @default.
- W2968701121 cites W2560633845 @default.
- W2968701121 cites W2625190400 @default.
- W2968701121 cites W2733300139 @default.
- W2968701121 cites W2735337297 @default.
- W2968701121 cites W2751986434 @default.
- W2968701121 cites W2753180230 @default.
- W2968701121 cites W4212883601 @default.
- W2968701121 cites W4247074730 @default.
- W2968701121 doi "https://doi.org/10.1108/k-06-2018-0313" @default.
- W2968701121 hasPublicationYear "2019" @default.
- W2968701121 type Work @default.
- W2968701121 sameAs 2968701121 @default.
- W2968701121 citedByCount "2" @default.
- W2968701121 countsByYear W29687011212022 @default.
- W2968701121 crossrefType "journal-article" @default.
- W2968701121 hasAuthorship W2968701121A5009989858 @default.
- W2968701121 hasAuthorship W2968701121A5034507166 @default.
- W2968701121 hasConcept C111919701 @default.
- W2968701121 hasConcept C119857082 @default.
- W2968701121 hasConcept C124101348 @default.
- W2968701121 hasConcept C138885662 @default.
- W2968701121 hasConcept C144133560 @default.
- W2968701121 hasConcept C153180895 @default.
- W2968701121 hasConcept C154945302 @default.
- W2968701121 hasConcept C162853370 @default.
- W2968701121 hasConcept C2776401178 @default.
- W2968701121 hasConcept C2778572836 @default.
- W2968701121 hasConcept C2988382989 @default.
- W2968701121 hasConcept C41008148 @default.
- W2968701121 hasConcept C41895202 @default.
- W2968701121 hasConcept C73555534 @default.
- W2968701121 hasConcept C83665646 @default.
- W2968701121 hasConcept C86251818 @default.
- W2968701121 hasConceptScore W2968701121C111919701 @default.
- W2968701121 hasConceptScore W2968701121C119857082 @default.
- W2968701121 hasConceptScore W2968701121C124101348 @default.
- W2968701121 hasConceptScore W2968701121C138885662 @default.
- W2968701121 hasConceptScore W2968701121C144133560 @default.
- W2968701121 hasConceptScore W2968701121C153180895 @default.
- W2968701121 hasConceptScore W2968701121C154945302 @default.
- W2968701121 hasConceptScore W2968701121C162853370 @default.
- W2968701121 hasConceptScore W2968701121C2776401178 @default.
- W2968701121 hasConceptScore W2968701121C2778572836 @default.
- W2968701121 hasConceptScore W2968701121C2988382989 @default.
- W2968701121 hasConceptScore W2968701121C41008148 @default.
- W2968701121 hasConceptScore W2968701121C41895202 @default.
- W2968701121 hasConceptScore W2968701121C73555534 @default.
- W2968701121 hasConceptScore W2968701121C83665646 @default.
- W2968701121 hasConceptScore W2968701121C86251818 @default.
- W2968701121 hasIssue "9" @default.
- W2968701121 hasLocation W29687011211 @default.
- W2968701121 hasOpenAccess W2968701121 @default.
- W2968701121 hasPrimaryLocation W29687011211 @default.
- W2968701121 hasRelatedWork W2015538044 @default.
- W2968701121 hasRelatedWork W2052253960 @default.
- W2968701121 hasRelatedWork W2133581097 @default.
- W2968701121 hasRelatedWork W2147802381 @default.
- W2968701121 hasRelatedWork W2509918103 @default.
- W2968701121 hasRelatedWork W2785535669 @default.
- W2968701121 hasRelatedWork W3175329489 @default.
- W2968701121 hasRelatedWork W3197541072 @default.
- W2968701121 hasRelatedWork W1484404275 @default.