Matches in SemOpenAlex for { <https://semopenalex.org/work/W2968710006> ?p ?o ?g. }
- W2968710006 endingPage "440" @default.
- W2968710006 startingPage "430" @default.
- W2968710006 abstract "Cytochrome P450 3A4 isoform (<i>CYP3A4</i>) transcription is controlled by hepatic transcription factors (TFs), but how TFs dynamically interact remains uncertain. We hypothesize that several TFs form a regulatory network with nonlinear, dynamic, and hierarchical interactions. To resolve complex interactions, we have applied a computational approach for estimating Sobol’s sensitivity indices (SSI) under generalized linear models to existing liver RNA expression microarray data (GSE9588) and RNA-seq data from genotype-tissue expression (GTEx), generating robust importance ranking of TF effects and interactions. The SSI-based analysis identified TFs and interacting TF pairs, triplets, and quadruplets involved in CYP3A4 expression. In addition to known CYP3A4 TFs, estrogen receptor <i>α</i> (ESR1) emerges as key TF with the strongest main effect and as the most frequently included TF interacting partner. Model predictions were validated using small interfering RNA (siRNA)/short hairpin RNA (shRNA) gene knockdown and clustered regularly interspaced short palindromic repeats (CRISPR)–mediated transcriptional activation of <i>ESR1</i> in biliary epithelial Huh7 cells and human hepatocytes in the absence of estrogen. Moreover, ESR1 and known CYP3A4 TFs mutually regulate each other. Detectable in both male and female hepatocytes without added estrogen, the results demonstrate a role for unliganded ESR1 in CYP3A4 expression consistent with unliganded ESR1 signaling reported in other cell types. Added estrogen further enhances ESR1 effects. We propose a hierarchical regulatory network for CYP3A4 expression directed by ESR1 through self-regulation, cross regulation, and TF-TF interactions. We also demonstrate that ESR1 regulates the expression of other P450 enzymes, suggesting broad influence of ESR1 on xenobiotics metabolism in human liver. Further studies are required to understand the mechanisms underlying role of ESR1 in P450 regulation. <h3>SIGNIFICANCE STATEMENT</h3> This study focuses on identifying key transcription factors and regulatory networks for CYP3A4, the main drug metabolizing enzymes in liver. We applied a new computational approach (Sobol’s sensitivity analysis) to existing hepatic gene expression data to determine the role of transcription factors in regulating CYP3A4 expression, and used molecular genetics methods (siRNA/shRNA gene knockdown and CRISPR-mediated transcriptional activation) to test these interactions in life cells. This approach reveals a robust network of TFs, including their putative interactions and the relative impact of each interaction. We find that ESR1 serves as a key transcription factor function in regulating CYP3A4, and it appears to be acting at least in part in a ligand-free fashion." @default.
- W2968710006 created "2019-08-22" @default.
- W2968710006 creator A5062174660 @default.
- W2968710006 creator A5067885487 @default.
- W2968710006 creator A5072557914 @default.
- W2968710006 creator A5080697604 @default.
- W2968710006 date "2019-08-09" @default.
- W2968710006 modified "2023-09-24" @default.
- W2968710006 title "Ligand-Free Estrogen Receptor <i>α</i> (ESR1) as Master Regulator for the Expression of CYP3A4 and Other Cytochrome P450 Enzymes in the Human Liver" @default.
- W2968710006 cites W1891998632 @default.
- W2968710006 cites W1970461091 @default.
- W2968710006 cites W2002661807 @default.
- W2968710006 cites W2005073765 @default.
- W2968710006 cites W2009722110 @default.
- W2968710006 cites W2012740498 @default.
- W2968710006 cites W2013831911 @default.
- W2968710006 cites W2015491422 @default.
- W2968710006 cites W2024499767 @default.
- W2968710006 cites W2025175130 @default.
- W2968710006 cites W2034451783 @default.
- W2968710006 cites W2040459088 @default.
- W2968710006 cites W2041619292 @default.
- W2968710006 cites W2041631632 @default.
- W2968710006 cites W2042802531 @default.
- W2968710006 cites W2050518533 @default.
- W2968710006 cites W2059477274 @default.
- W2968710006 cites W2060579941 @default.
- W2968710006 cites W2060705109 @default.
- W2968710006 cites W2062493839 @default.
- W2968710006 cites W2080228333 @default.
- W2968710006 cites W2080242218 @default.
- W2968710006 cites W2082187626 @default.
- W2968710006 cites W2085711038 @default.
- W2968710006 cites W2088280645 @default.
- W2968710006 cites W2089656784 @default.
- W2968710006 cites W2098511561 @default.
- W2968710006 cites W2099887488 @default.
- W2968710006 cites W2109634874 @default.
- W2968710006 cites W2115875993 @default.
- W2968710006 cites W2124477690 @default.
- W2968710006 cites W2125014338 @default.
- W2968710006 cites W2127862779 @default.
- W2968710006 cites W2133499169 @default.
- W2968710006 cites W2136940727 @default.
- W2968710006 cites W2139025111 @default.
- W2968710006 cites W2141452671 @default.
- W2968710006 cites W2143748741 @default.
- W2968710006 cites W2146947666 @default.
- W2968710006 cites W2148012276 @default.
- W2968710006 cites W2151282765 @default.
- W2968710006 cites W2151586219 @default.
- W2968710006 cites W2169193886 @default.
- W2968710006 cites W2198906286 @default.
- W2968710006 cites W2201070551 @default.
- W2968710006 cites W2258460347 @default.
- W2968710006 cites W2262709833 @default.
- W2968710006 cites W2400971043 @default.
- W2968710006 cites W2761275051 @default.
- W2968710006 cites W2761585455 @default.
- W2968710006 cites W2793727858 @default.
- W2968710006 cites W2964075504 @default.
- W2968710006 cites W4250685861 @default.
- W2968710006 cites W4256199250 @default.
- W2968710006 cites W74495713 @default.
- W2968710006 cites W947357032 @default.
- W2968710006 doi "https://doi.org/10.1124/mol.119.116897" @default.
- W2968710006 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6724575" @default.
- W2968710006 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31399483" @default.
- W2968710006 hasPublicationYear "2019" @default.
- W2968710006 type Work @default.
- W2968710006 sameAs 2968710006 @default.
- W2968710006 citedByCount "23" @default.
- W2968710006 countsByYear W29687100062020 @default.
- W2968710006 countsByYear W29687100062021 @default.
- W2968710006 countsByYear W29687100062022 @default.
- W2968710006 crossrefType "journal-article" @default.
- W2968710006 hasAuthorship W2968710006A5062174660 @default.
- W2968710006 hasAuthorship W2968710006A5067885487 @default.
- W2968710006 hasAuthorship W2968710006A5072557914 @default.
- W2968710006 hasAuthorship W2968710006A5080697604 @default.
- W2968710006 hasBestOaLocation W29687100061 @default.
- W2968710006 hasConcept C104317684 @default.
- W2968710006 hasConcept C109650736 @default.
- W2968710006 hasConcept C121608353 @default.
- W2968710006 hasConcept C150194340 @default.
- W2968710006 hasConcept C165864922 @default.
- W2968710006 hasConcept C172313692 @default.
- W2968710006 hasConcept C173396325 @default.
- W2968710006 hasConcept C181199279 @default.
- W2968710006 hasConcept C22615655 @default.
- W2968710006 hasConcept C27153228 @default.
- W2968710006 hasConcept C2775905019 @default.
- W2968710006 hasConcept C526171541 @default.
- W2968710006 hasConcept C530470458 @default.
- W2968710006 hasConcept C54355233 @default.
- W2968710006 hasConcept C55493867 @default.
- W2968710006 hasConcept C67705224 @default.
- W2968710006 hasConcept C70721500 @default.