Matches in SemOpenAlex for { <https://semopenalex.org/work/W2968752509> ?p ?o ?g. }
- W2968752509 endingPage "1859" @default.
- W2968752509 startingPage "1859" @default.
- W2968752509 abstract "One of the most challenging problems in precision agriculture is to correctly identify and separate crops from the soil. Current precision farming algorithms based on artificially intelligent networks use multi-spectral or hyper-spectral data to derive radiometric indices that guide the operational management of agricultural complexes. Deep learning applications using these big data require sensitive filtering of raw data to effectively drive their hidden layer neural network architectures. Threshold techniques based on the normalized difference vegetation index (NDVI) or other similar metrics are generally used to simplify the development and training of deep learning neural networks. They have the advantage of being natural transformations of hyper-spectral or multi-spectral images that filter the data stream into a neural network, while reducing training requirements and increasing system classification performance. In this paper, to calculate a detailed crop/soil segmentation based on high resolution Digital Surface Model (DSM) data, we propose the redefinition of the radiometric index using a directional mathematical filter. To further refine the analysis, we feed this new radiometric index image of about 3500 × 4500 pixels into a relatively small Convolution Neural Network (CNN) designed for general image pattern recognition at 28 × 28 pixels to evaluate and resolve the vegetation correctly. We show that the result of applying a DSM filter to the NDVI radiometric index before feeding it into a Convolutional Neural Network can potentially improve crop separation hit rate by 65%." @default.
- W2968752509 created "2019-08-22" @default.
- W2968752509 creator A5000889718 @default.
- W2968752509 creator A5012125729 @default.
- W2968752509 creator A5043094333 @default.
- W2968752509 creator A5083358549 @default.
- W2968752509 date "2019-08-09" @default.
- W2968752509 modified "2023-10-02" @default.
- W2968752509 title "Deep Learning for Soil and Crop Segmentation from Remotely Sensed Data" @default.
- W2968752509 cites W1551473783 @default.
- W2968752509 cites W1593712945 @default.
- W2968752509 cites W2001082716 @default.
- W2968752509 cites W2002063995 @default.
- W2968752509 cites W2006730773 @default.
- W2968752509 cites W2014795214 @default.
- W2968752509 cites W2019416082 @default.
- W2968752509 cites W2037642501 @default.
- W2968752509 cites W2048750869 @default.
- W2968752509 cites W2056370875 @default.
- W2968752509 cites W2063689707 @default.
- W2968752509 cites W2075512496 @default.
- W2968752509 cites W2077758750 @default.
- W2968752509 cites W2148241182 @default.
- W2968752509 cites W2157457846 @default.
- W2968752509 cites W2560354041 @default.
- W2968752509 cites W2582672248 @default.
- W2968752509 cites W2765411908 @default.
- W2968752509 cites W2886554959 @default.
- W2968752509 cites W2945925278 @default.
- W2968752509 cites W2947744514 @default.
- W2968752509 doi "https://doi.org/10.3390/rs11161859" @default.
- W2968752509 hasPublicationYear "2019" @default.
- W2968752509 type Work @default.
- W2968752509 sameAs 2968752509 @default.
- W2968752509 citedByCount "39" @default.
- W2968752509 countsByYear W29687525092019 @default.
- W2968752509 countsByYear W29687525092020 @default.
- W2968752509 countsByYear W29687525092021 @default.
- W2968752509 countsByYear W29687525092022 @default.
- W2968752509 countsByYear W29687525092023 @default.
- W2968752509 crossrefType "journal-article" @default.
- W2968752509 hasAuthorship W2968752509A5000889718 @default.
- W2968752509 hasAuthorship W2968752509A5012125729 @default.
- W2968752509 hasAuthorship W2968752509A5043094333 @default.
- W2968752509 hasAuthorship W2968752509A5083358549 @default.
- W2968752509 hasBestOaLocation W29687525091 @default.
- W2968752509 hasConcept C106131492 @default.
- W2968752509 hasConcept C108583219 @default.
- W2968752509 hasConcept C118518473 @default.
- W2968752509 hasConcept C120217122 @default.
- W2968752509 hasConcept C153180895 @default.
- W2968752509 hasConcept C1549246 @default.
- W2968752509 hasConcept C154945302 @default.
- W2968752509 hasConcept C160633673 @default.
- W2968752509 hasConcept C166957645 @default.
- W2968752509 hasConcept C18903297 @default.
- W2968752509 hasConcept C205649164 @default.
- W2968752509 hasConcept C25989453 @default.
- W2968752509 hasConcept C31972630 @default.
- W2968752509 hasConcept C41008148 @default.
- W2968752509 hasConcept C50644808 @default.
- W2968752509 hasConcept C62649853 @default.
- W2968752509 hasConcept C81363708 @default.
- W2968752509 hasConcept C86803240 @default.
- W2968752509 hasConceptScore W2968752509C106131492 @default.
- W2968752509 hasConceptScore W2968752509C108583219 @default.
- W2968752509 hasConceptScore W2968752509C118518473 @default.
- W2968752509 hasConceptScore W2968752509C120217122 @default.
- W2968752509 hasConceptScore W2968752509C153180895 @default.
- W2968752509 hasConceptScore W2968752509C1549246 @default.
- W2968752509 hasConceptScore W2968752509C154945302 @default.
- W2968752509 hasConceptScore W2968752509C160633673 @default.
- W2968752509 hasConceptScore W2968752509C166957645 @default.
- W2968752509 hasConceptScore W2968752509C18903297 @default.
- W2968752509 hasConceptScore W2968752509C205649164 @default.
- W2968752509 hasConceptScore W2968752509C25989453 @default.
- W2968752509 hasConceptScore W2968752509C31972630 @default.
- W2968752509 hasConceptScore W2968752509C41008148 @default.
- W2968752509 hasConceptScore W2968752509C50644808 @default.
- W2968752509 hasConceptScore W2968752509C62649853 @default.
- W2968752509 hasConceptScore W2968752509C81363708 @default.
- W2968752509 hasConceptScore W2968752509C86803240 @default.
- W2968752509 hasIssue "16" @default.
- W2968752509 hasLocation W29687525091 @default.
- W2968752509 hasLocation W29687525092 @default.
- W2968752509 hasLocation W29687525093 @default.
- W2968752509 hasOpenAccess W2968752509 @default.
- W2968752509 hasPrimaryLocation W29687525091 @default.
- W2968752509 hasRelatedWork W2731899572 @default.
- W2968752509 hasRelatedWork W2732542196 @default.
- W2968752509 hasRelatedWork W2738221750 @default.
- W2968752509 hasRelatedWork W3116150086 @default.
- W2968752509 hasRelatedWork W3133861977 @default.
- W2968752509 hasRelatedWork W3156786002 @default.
- W2968752509 hasRelatedWork W4200173597 @default.
- W2968752509 hasRelatedWork W4312417841 @default.
- W2968752509 hasRelatedWork W4321369474 @default.
- W2968752509 hasRelatedWork W564581980 @default.