Matches in SemOpenAlex for { <https://semopenalex.org/work/W2968759957> ?p ?o ?g. }
- W2968759957 endingPage "2063" @default.
- W2968759957 startingPage "2059" @default.
- W2968759957 abstract "Compressed sensing (CS) is a technique which uses fewer measurements than dictated by the Nyquist sampling theorem. The traditional CS with linear measurements achieves effective recovery, but it suffers from large bit consumption due to the precision required by those measurements. Then, the one-bit CS with binary measurements is proposed to save the bit budget, but it is infeasible when the energy information of signals is not available as a prior knowledge. Subsequently, the hybrid CS which combines traditional CS and one-bit CS appears, striking a balance between the pros and cons of both types of CS. Given that one-bit CS is optimal for the direction estimation of signals under noise with a fixed bit budget and that traditional CS is able to provide residue information and estimated signals, we focus on the design of greedy algorithms, which consist of the main steps of support detection and recovered signal updates, for hybrid CS in this paper. We propose two greedy algorithms for hybrid CS, with traditional CS offering signal estimates and updated residues, which help one-bit CS detect the support iteratively. Then, we provide a theoretical analysis of the error bound between the normalized original signal and the normalized estimated signal. Numerical results demonstrate the efficacy of the proposed greedy algorithms for hybrid CS in noisy environments." @default.
- W2968759957 created "2019-08-22" @default.
- W2968759957 creator A5018491742 @default.
- W2968759957 creator A5036464608 @default.
- W2968759957 creator A5042784674 @default.
- W2968759957 date "2020-01-01" @default.
- W2968759957 modified "2023-10-17" @default.
- W2968759957 title "Greedy Algorithms for Hybrid Compressed Sensing" @default.
- W2968759957 cites W1966946151 @default.
- W2968759957 cites W1969013077 @default.
- W2968759957 cites W1977601760 @default.
- W2968759957 cites W1980454827 @default.
- W2968759957 cites W1985123706 @default.
- W2968759957 cites W2008917987 @default.
- W2968759957 cites W2015418199 @default.
- W2968759957 cites W2018680103 @default.
- W2968759957 cites W2029816571 @default.
- W2968759957 cites W2036850226 @default.
- W2968759957 cites W2046658845 @default.
- W2968759957 cites W2060430274 @default.
- W2968759957 cites W2065321782 @default.
- W2968759957 cites W2071284784 @default.
- W2968759957 cites W2082029531 @default.
- W2968759957 cites W2099100030 @default.
- W2968759957 cites W2111895931 @default.
- W2968759957 cites W2112038498 @default.
- W2968759957 cites W2127271355 @default.
- W2968759957 cites W2129131372 @default.
- W2968759957 cites W2135780853 @default.
- W2968759957 cites W2135806093 @default.
- W2968759957 cites W2136398689 @default.
- W2968759957 cites W2140532408 @default.
- W2968759957 cites W2145096794 @default.
- W2968759957 cites W2148041990 @default.
- W2968759957 cites W2150991625 @default.
- W2968759957 cites W2160979406 @default.
- W2968759957 cites W2163107063 @default.
- W2968759957 cites W2164452299 @default.
- W2968759957 cites W2168374944 @default.
- W2968759957 cites W2168745297 @default.
- W2968759957 cites W2270233494 @default.
- W2968759957 cites W2289917018 @default.
- W2968759957 cites W2293318283 @default.
- W2968759957 cites W2294622949 @default.
- W2968759957 cites W2296616510 @default.
- W2968759957 cites W2576230203 @default.
- W2968759957 cites W2592907885 @default.
- W2968759957 cites W2800545360 @default.
- W2968759957 cites W2938425271 @default.
- W2968759957 cites W2963730937 @default.
- W2968759957 cites W2963814543 @default.
- W2968759957 cites W2964003909 @default.
- W2968759957 cites W2964322027 @default.
- W2968759957 cites W3102746518 @default.
- W2968759957 cites W3105340263 @default.
- W2968759957 cites W340244495 @default.
- W2968759957 doi "https://doi.org/10.1109/lsp.2020.3037732" @default.
- W2968759957 hasPublicationYear "2020" @default.
- W2968759957 type Work @default.
- W2968759957 sameAs 2968759957 @default.
- W2968759957 citedByCount "0" @default.
- W2968759957 crossrefType "journal-article" @default.
- W2968759957 hasAuthorship W2968759957A5018491742 @default.
- W2968759957 hasAuthorship W2968759957A5036464608 @default.
- W2968759957 hasAuthorship W2968759957A5042784674 @default.
- W2968759957 hasBestOaLocation W29687599572 @default.
- W2968759957 hasConcept C105795698 @default.
- W2968759957 hasConcept C11413529 @default.
- W2968759957 hasConcept C117011727 @default.
- W2968759957 hasConcept C120665830 @default.
- W2968759957 hasConcept C121332964 @default.
- W2968759957 hasConcept C124851039 @default.
- W2968759957 hasConcept C140779682 @default.
- W2968759957 hasConcept C186370098 @default.
- W2968759957 hasConcept C192209626 @default.
- W2968759957 hasConcept C199360897 @default.
- W2968759957 hasConcept C2779843651 @default.
- W2968759957 hasConcept C288623 @default.
- W2968759957 hasConcept C31972630 @default.
- W2968759957 hasConcept C33923547 @default.
- W2968759957 hasConcept C38652104 @default.
- W2968759957 hasConcept C41008148 @default.
- W2968759957 hasConcept C48372109 @default.
- W2968759957 hasConcept C51823790 @default.
- W2968759957 hasConcept C76155785 @default.
- W2968759957 hasConcept C94375191 @default.
- W2968759957 hasConcept C94915269 @default.
- W2968759957 hasConceptScore W2968759957C105795698 @default.
- W2968759957 hasConceptScore W2968759957C11413529 @default.
- W2968759957 hasConceptScore W2968759957C117011727 @default.
- W2968759957 hasConceptScore W2968759957C120665830 @default.
- W2968759957 hasConceptScore W2968759957C121332964 @default.
- W2968759957 hasConceptScore W2968759957C124851039 @default.
- W2968759957 hasConceptScore W2968759957C140779682 @default.
- W2968759957 hasConceptScore W2968759957C186370098 @default.
- W2968759957 hasConceptScore W2968759957C192209626 @default.
- W2968759957 hasConceptScore W2968759957C199360897 @default.
- W2968759957 hasConceptScore W2968759957C2779843651 @default.