Matches in SemOpenAlex for { <https://semopenalex.org/work/W2968782698> ?p ?o ?g. }
Showing items 1 to 64 of
64
with 100 items per page.
- W2968782698 abstract "PreviousNext No AccessSEG Technical Program Expanded Abstracts 2019Porosity evaluation of igneous rocks based on deep learningAuthors: Yunlong GeWensheng WuRuigang WangLiuqiong HeYunlong GeChina University of Petroleum-BeijingSearch for more papers by this author, Wensheng WuChina University of Petroleum-BeijingSearch for more papers by this author, Ruigang WangChina University of Petroleum-BeijingSearch for more papers by this author, and Liuqiong HeChina University of Petroleum-BeijingSearch for more papers by this authorhttps://doi.org/10.1190/segam2019-3211813.1 SectionsAboutPDF/ePub ToolsAdd to favoritesDownload CitationsTrack CitationsPermissions ShareFacebookTwitterLinked InRedditEmail AbstractThe mineral composition of the igneous rock is complex. Even with the same lithology, the rock matrix parameters vary greatly, which makes it difficult to obtain the porosity accurately. In this paper, the formation porosity is obtained based on the density logging and the geochemical spectroscopy logging. The geochemical spectroscopy logging combined with deep learning is used to determine the rock matrix density. The deep learning database, constrained by the core analysis data, is established based on the physical properties of minerals and the Monte Carlo method. To make full use of the robustness of deep learning and improve the interpretation accuracy, the density of each mineral changes within a certain range when the rock matrix density of training samples is set up. Once the rock matrix density is obtained, porosity can be derived by the volume model. The field example shows the porosity calculated by deep learning is closer to the core porosity than that calculated by the conventional methods.Presentation Date: Tuesday, September 17, 2019Session Start Time: 9:20 AMPresentation Time: 9:20 AMLocation: Poster Station 4Presentation Type: PosterKeywords: machine learning, well-log interpretation, reservoir characterization, borehole geophysics, log analysisPermalink: https://doi.org/10.1190/segam2019-3211813.1FiguresReferencesRelatedDetailsCited byQuantitative characterization of shale gas reservoir properties based on BiLSTM with attention mechanismGeoscience Frontiers, Vol. 7Modeling extra-deep electromagnetic logs using a deep neural networkSergey Alyaev, Mostafa Shahriari, David Pardo, Ángel Javier Omella, David Selvåg Larsen, Nazanin Jahani, and Erich Suter13 May 2021 | GEOPHYSICS, Vol. 86, No. 3Research on well logging evaluation method of igneous reservoir in Nanpu No.5 structure29 July 2020 | Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, Vol. 3The Phenomenon of existence Batu Angus on the eastern slopes of mount Gamalama Ternate island North MalukuJournal of Physics: Conference Series, Vol. 1511, No. 1 SEG Technical Program Expanded Abstracts 2019ISSN (print):1052-3812 ISSN (online):1949-4645Copyright: 2019 Pages: 5407 publication data© 2019 Published in electronic format with permission by the Society of Exploration GeophysicistsPublisher:Society of Exploration Geophysicists HistoryPublished Online: 10 Aug 2019 CITATION INFORMATION Yunlong Ge, Wensheng Wu, Ruigang Wang, and Liuqiong He, (2019), Porosity evaluation of igneous rocks based on deep learning, SEG Technical Program Expanded Abstracts : 910-914. https://doi.org/10.1190/segam2019-3211813.1 Plain-Language Summary Keywordsmachine learningwell-log interpretationreservoir characterizationborehole geophysicslog analysisPDF DownloadLoading ..." @default.
- W2968782698 created "2019-08-22" @default.
- W2968782698 creator A5030848251 @default.
- W2968782698 creator A5059410140 @default.
- W2968782698 creator A5061069727 @default.
- W2968782698 creator A5068206027 @default.
- W2968782698 date "2019-08-10" @default.
- W2968782698 modified "2023-10-14" @default.
- W2968782698 title "Porosity evaluation of igneous rocks based on deep learning" @default.
- W2968782698 cites W1968142418 @default.
- W2968782698 cites W1992346588 @default.
- W2968782698 cites W2048102466 @default.
- W2968782698 cites W2084030382 @default.
- W2968782698 cites W2100495367 @default.
- W2968782698 doi "https://doi.org/10.1190/segam2019-3211813.1" @default.
- W2968782698 hasPublicationYear "2019" @default.
- W2968782698 type Work @default.
- W2968782698 sameAs 2968782698 @default.
- W2968782698 citedByCount "4" @default.
- W2968782698 countsByYear W29687826982020 @default.
- W2968782698 countsByYear W29687826982021 @default.
- W2968782698 countsByYear W29687826982023 @default.
- W2968782698 crossrefType "proceedings-article" @default.
- W2968782698 hasAuthorship W2968782698A5030848251 @default.
- W2968782698 hasAuthorship W2968782698A5059410140 @default.
- W2968782698 hasAuthorship W2968782698A5061069727 @default.
- W2968782698 hasAuthorship W2968782698A5068206027 @default.
- W2968782698 hasConcept C106487976 @default.
- W2968782698 hasConcept C122792734 @default.
- W2968782698 hasConcept C127313418 @default.
- W2968782698 hasConcept C159985019 @default.
- W2968782698 hasConcept C17409809 @default.
- W2968782698 hasConcept C187320778 @default.
- W2968782698 hasConcept C192562407 @default.
- W2968782698 hasConcept C199289684 @default.
- W2968782698 hasConcept C42787717 @default.
- W2968782698 hasConcept C6648577 @default.
- W2968782698 hasConceptScore W2968782698C106487976 @default.
- W2968782698 hasConceptScore W2968782698C122792734 @default.
- W2968782698 hasConceptScore W2968782698C127313418 @default.
- W2968782698 hasConceptScore W2968782698C159985019 @default.
- W2968782698 hasConceptScore W2968782698C17409809 @default.
- W2968782698 hasConceptScore W2968782698C187320778 @default.
- W2968782698 hasConceptScore W2968782698C192562407 @default.
- W2968782698 hasConceptScore W2968782698C199289684 @default.
- W2968782698 hasConceptScore W2968782698C42787717 @default.
- W2968782698 hasConceptScore W2968782698C6648577 @default.
- W2968782698 hasLocation W29687826981 @default.
- W2968782698 hasOpenAccess W2968782698 @default.
- W2968782698 hasPrimaryLocation W29687826981 @default.
- W2968782698 hasRelatedWork W2068140212 @default.
- W2968782698 hasRelatedWork W2095205215 @default.
- W2968782698 hasRelatedWork W2145552873 @default.
- W2968782698 hasRelatedWork W2187952530 @default.
- W2968782698 hasRelatedWork W2365307159 @default.
- W2968782698 hasRelatedWork W2373443009 @default.
- W2968782698 hasRelatedWork W2378481756 @default.
- W2968782698 hasRelatedWork W2383174644 @default.
- W2968782698 hasRelatedWork W2393607114 @default.
- W2968782698 hasRelatedWork W39879183 @default.
- W2968782698 isParatext "false" @default.
- W2968782698 isRetracted "false" @default.
- W2968782698 magId "2968782698" @default.
- W2968782698 workType "article" @default.