Matches in SemOpenAlex for { <https://semopenalex.org/work/W2968805611> ?p ?o ?g. }
- W2968805611 abstract "Abstract Previous studies have indicated that white matter hyperintensities (WMH), the main radiological feature of small vessel disease, may evolve (i.e., shrink, grow) or stay stable over a period of time. Predicting these changes are challenging because it involves some unknown clinical risk factors that leads to a non-deterministic prediction task. In this study, we propose a deep learning model to predict the evolution of WMH from baseline to follow-up (i.e., 1-year later), namely “Disease Evolution Predictor” (DEP) model, which can be adjusted to become a non-deterministic model. The DEP model receives a baseline image as input and produces a map called “Disease Evolution Map” (DEM), which represents the evolution of WMH from baseline to follow-up. Two DEP models are proposed, namely DEP-UResNet and DEP-GAN, which are representatives of the supervised (i.e., need expert-generated manual labels to generate the output) and unsupervised (i.e., do not require manual labels produced by experts) deep learning algorithms respectively. To simulate the non-deterministic and unknown parameters involved in WMH evolution, we modulate a Gaussian noise array to the DEP model as auxiliary input. This forces the DEP model to imitate a wider spectrum of alternatives in the prediction results. The alternatives of using other types of auxiliary input instead, such as baseline WMH and stroke lesion loads are also proposed and tested. Based on our experiments, the fully supervised machine learning scheme DEP-UResNet regularly performed better than the DEP-GAN which works in principle without using any expert-generated label (i.e., unsupervised). However, a semi-supervised DEP-GAN model, which uses probability maps produced by a supervised segmentation method in the learning process, yielded similar performances to the DEP-UResNet and performed best in the clinical evaluation. Furthermore, an ablation study showed that an auxiliary input, especially the Gaussian noise, improved the performance of DEP models compared to DEP models that lacked the auxiliary input regardless of the model’s architecture. To the best of our knowledge, this is the first extensive study on modelling WMH evolution using deep learning algorithms, which deals with the non-deterministic nature of WMH evolution." @default.
- W2968805611 created "2019-08-22" @default.
- W2968805611 creator A5014324841 @default.
- W2968805611 creator A5025285051 @default.
- W2968805611 creator A5028857433 @default.
- W2968805611 creator A5037666948 @default.
- W2968805611 creator A5045827546 @default.
- W2968805611 date "2019-08-19" @default.
- W2968805611 modified "2023-10-14" @default.
- W2968805611 title "Automatic Spatial Estimation of White Matter Hyperintensities Evolution in Brain MRI using Disease Evolution Predictor Deep Neural Networks" @default.
- W2968805611 cites W1968053945 @default.
- W2968805611 cites W1976558510 @default.
- W2968805611 cites W1982853049 @default.
- W2968805611 cites W1987869189 @default.
- W2968805611 cites W1994823542 @default.
- W2968805611 cites W1996120720 @default.
- W2968805611 cites W1999372298 @default.
- W2968805611 cites W2003248643 @default.
- W2968805611 cites W2004460386 @default.
- W2968805611 cites W2012864352 @default.
- W2968805611 cites W2014928410 @default.
- W2968805611 cites W2015795623 @default.
- W2968805611 cites W2020753774 @default.
- W2968805611 cites W2052644075 @default.
- W2968805611 cites W2070658378 @default.
- W2968805611 cites W2072290762 @default.
- W2968805611 cites W2073712197 @default.
- W2968805611 cites W2076428954 @default.
- W2968805611 cites W2089435027 @default.
- W2968805611 cites W2097805840 @default.
- W2968805611 cites W2126777908 @default.
- W2968805611 cites W2126817449 @default.
- W2968805611 cites W2128251808 @default.
- W2968805611 cites W2131078911 @default.
- W2968805611 cites W2132752715 @default.
- W2968805611 cites W2132874104 @default.
- W2968805611 cites W2134730295 @default.
- W2968805611 cites W2158742097 @default.
- W2968805611 cites W2165798604 @default.
- W2968805611 cites W2167945792 @default.
- W2968805611 cites W2260009711 @default.
- W2968805611 cites W2281498324 @default.
- W2968805611 cites W2315929518 @default.
- W2968805611 cites W2341614146 @default.
- W2968805611 cites W2464708700 @default.
- W2968805611 cites W2560722161 @default.
- W2968805611 cites W2591269875 @default.
- W2968805611 cites W2617019071 @default.
- W2968805611 cites W2617459366 @default.
- W2968805611 cites W2743177227 @default.
- W2968805611 cites W2753620021 @default.
- W2968805611 cites W2760103357 @default.
- W2968805611 cites W2772661248 @default.
- W2968805611 cites W2787769342 @default.
- W2968805611 cites W2789256791 @default.
- W2968805611 cites W2791455729 @default.
- W2968805611 cites W2804161046 @default.
- W2968805611 cites W2890139949 @default.
- W2968805611 cites W2890533802 @default.
- W2968805611 cites W2905966631 @default.
- W2968805611 cites W2950448505 @default.
- W2968805611 cites W2950680182 @default.
- W2968805611 cites W2952735543 @default.
- W2968805611 cites W2953949094 @default.
- W2968805611 cites W2955061344 @default.
- W2968805611 cites W2963001155 @default.
- W2968805611 cites W2963076262 @default.
- W2968805611 cites W2963635991 @default.
- W2968805611 cites W2964171289 @default.
- W2968805611 cites W2979876938 @default.
- W2968805611 cites W2982189262 @default.
- W2968805611 cites W2991340843 @default.
- W2968805611 doi "https://doi.org/10.1101/738641" @default.
- W2968805611 hasPublicationYear "2019" @default.
- W2968805611 type Work @default.
- W2968805611 sameAs 2968805611 @default.
- W2968805611 citedByCount "2" @default.
- W2968805611 countsByYear W29688056112021 @default.
- W2968805611 crossrefType "posted-content" @default.
- W2968805611 hasAuthorship W2968805611A5014324841 @default.
- W2968805611 hasAuthorship W2968805611A5025285051 @default.
- W2968805611 hasAuthorship W2968805611A5028857433 @default.
- W2968805611 hasAuthorship W2968805611A5037666948 @default.
- W2968805611 hasAuthorship W2968805611A5045827546 @default.
- W2968805611 hasBestOaLocation W29688056111 @default.
- W2968805611 hasConcept C108583219 @default.
- W2968805611 hasConcept C119857082 @default.
- W2968805611 hasConcept C126838900 @default.
- W2968805611 hasConcept C12725497 @default.
- W2968805611 hasConcept C138885662 @default.
- W2968805611 hasConcept C143409427 @default.
- W2968805611 hasConcept C146638467 @default.
- W2968805611 hasConcept C153180895 @default.
- W2968805611 hasConcept C154945302 @default.
- W2968805611 hasConcept C2776401178 @default.
- W2968805611 hasConcept C41008148 @default.
- W2968805611 hasConcept C41895202 @default.
- W2968805611 hasConcept C505870484 @default.
- W2968805611 hasConcept C50644808 @default.
- W2968805611 hasConcept C71924100 @default.