Matches in SemOpenAlex for { <https://semopenalex.org/work/W2968820498> ?p ?o ?g. }
- W2968820498 endingPage "2991" @default.
- W2968820498 startingPage "2974" @default.
- W2968820498 abstract "ABSTRACT The efficient classification of different types of supernovae is one of the most important problems for observational cosmology. However, spectroscopic confirmation of most objects in upcoming photometric surveys, such as the the Rubin Observatory Legacy Survey of Space and Time, will be unfeasible. The development of automated classification processes based on photometry has thus become crucial. In this paper, we investigate the performance of machine learning (ML) classification on the final cosmological constraints using simulated light-curves from the Supernova Photometric Classification Challenge, released in 2010. We study the use of different feature sets for the light-curves and many different ML pipelines based on either decision-tree ensembles or automated search processes. To construct the final catalogues we propose a threshold selection method, by employing a bias-variance tradeoff. This is a very robust and efficient way to minimize the mean squared error. With this method, we were able to obtain very strong cosmological constraints, which allowed us to keep $sim 75{{ rm per cent}}$ of the total information in the Type Ia supernovae when using the SALT2 feature set, and $sim 33{{ rm per cent}}$ for the other cases (based either on the Newling model or on standard wavelet decomposition)." @default.
- W2968820498 created "2019-08-22" @default.
- W2968820498 creator A5005477906 @default.
- W2968820498 creator A5022117693 @default.
- W2968820498 creator A5091022702 @default.
- W2968820498 date "2020-08-13" @default.
- W2968820498 modified "2023-10-01" @default.
- W2968820498 title "On the cosmological performance of photometrically classified supernovae with machine learning" @default.
- W2968820498 cites W1567468361 @default.
- W2968820498 cites W1688458284 @default.
- W2968820498 cites W1786686161 @default.
- W2968820498 cites W1896993123 @default.
- W2968820498 cites W1966716734 @default.
- W2968820498 cites W1969030169 @default.
- W2968820498 cites W1984631803 @default.
- W2968820498 cites W1985504415 @default.
- W2968820498 cites W2009625798 @default.
- W2968820498 cites W2029513557 @default.
- W2968820498 cites W2033326122 @default.
- W2968820498 cites W2039232902 @default.
- W2968820498 cites W2073163146 @default.
- W2968820498 cites W2092502491 @default.
- W2968820498 cites W2092674054 @default.
- W2968820498 cites W2113829810 @default.
- W2968820498 cites W2116873022 @default.
- W2968820498 cites W2118973161 @default.
- W2968820498 cites W2133043641 @default.
- W2968820498 cites W2159528023 @default.
- W2968820498 cites W2227274187 @default.
- W2968820498 cites W2259287094 @default.
- W2968820498 cites W2292579160 @default.
- W2968820498 cites W2469994677 @default.
- W2968820498 cites W2487241783 @default.
- W2968820498 cites W2497600269 @default.
- W2968820498 cites W2537863638 @default.
- W2968820498 cites W2762456709 @default.
- W2968820498 cites W2763117186 @default.
- W2968820498 cites W2771955855 @default.
- W2968820498 cites W2889993541 @default.
- W2968820498 cites W2891069754 @default.
- W2968820498 cites W2900256026 @default.
- W2968820498 cites W2913871063 @default.
- W2968820498 cites W2916494032 @default.
- W2968820498 cites W2945852308 @default.
- W2968820498 cites W2954822162 @default.
- W2968820498 cites W2965294966 @default.
- W2968820498 cites W3098165218 @default.
- W2968820498 cites W3100900998 @default.
- W2968820498 cites W3101122458 @default.
- W2968820498 cites W3102630542 @default.
- W2968820498 cites W3103494697 @default.
- W2968820498 cites W3103578919 @default.
- W2968820498 cites W3103616758 @default.
- W2968820498 cites W3103856467 @default.
- W2968820498 cites W3104092563 @default.
- W2968820498 cites W3104624285 @default.
- W2968820498 cites W3125243314 @default.
- W2968820498 cites W3126087517 @default.
- W2968820498 doi "https://doi.org/10.1093/mnras/staa1968" @default.
- W2968820498 hasPublicationYear "2020" @default.
- W2968820498 type Work @default.
- W2968820498 sameAs 2968820498 @default.
- W2968820498 citedByCount "7" @default.
- W2968820498 countsByYear W29688204982021 @default.
- W2968820498 countsByYear W29688204982022 @default.
- W2968820498 countsByYear W29688204982023 @default.
- W2968820498 crossrefType "journal-article" @default.
- W2968820498 hasAuthorship W2968820498A5005477906 @default.
- W2968820498 hasAuthorship W2968820498A5022117693 @default.
- W2968820498 hasAuthorship W2968820498A5091022702 @default.
- W2968820498 hasBestOaLocation W29688204982 @default.
- W2968820498 hasConcept C11413529 @default.
- W2968820498 hasConcept C119857082 @default.
- W2968820498 hasConcept C121332964 @default.
- W2968820498 hasConcept C127592171 @default.
- W2968820498 hasConcept C130726490 @default.
- W2968820498 hasConcept C150846664 @default.
- W2968820498 hasConcept C154945302 @default.
- W2968820498 hasConcept C26405456 @default.
- W2968820498 hasConcept C41008148 @default.
- W2968820498 hasConcept C44870925 @default.
- W2968820498 hasConcept C68271606 @default.
- W2968820498 hasConceptScore W2968820498C11413529 @default.
- W2968820498 hasConceptScore W2968820498C119857082 @default.
- W2968820498 hasConceptScore W2968820498C121332964 @default.
- W2968820498 hasConceptScore W2968820498C127592171 @default.
- W2968820498 hasConceptScore W2968820498C130726490 @default.
- W2968820498 hasConceptScore W2968820498C150846664 @default.
- W2968820498 hasConceptScore W2968820498C154945302 @default.
- W2968820498 hasConceptScore W2968820498C26405456 @default.
- W2968820498 hasConceptScore W2968820498C41008148 @default.
- W2968820498 hasConceptScore W2968820498C44870925 @default.
- W2968820498 hasConceptScore W2968820498C68271606 @default.
- W2968820498 hasFunder F4320322749 @default.
- W2968820498 hasFunder F4320325035 @default.
- W2968820498 hasIssue "3" @default.
- W2968820498 hasLocation W29688204981 @default.
- W2968820498 hasLocation W29688204982 @default.