Matches in SemOpenAlex for { <https://semopenalex.org/work/W2968900629> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W2968900629 endingPage "823" @default.
- W2968900629 startingPage "802" @default.
- W2968900629 abstract "The spatio-temporal residual network (ST-ResNet) leverages the power of deep learning (DL) for predicting the volume of citywide spatio-temporal flows. However, this model, neglects the dynamic dependency of the input flows in the temporal dimension, which affects what spatio-temporal features may be captured in the result. This study introduces a long short-term memory (LSTM) neural network into the ST-ResNet to form a hybrid integrated-DL model to predict the volumes of citywide spatio-temporal flows (called HIDLST). The new model can dynamically learn the temporal dependency among flows via the feedback connection in the LSTM to improve accurate captures of spatio-temporal features in the flows. We test the HIDLST model by predicting the volumes of citywide taxi flows in Beijing, China. We tune the hyperparameters of the HIDLST model to optimize the prediction accuracy. A comparative study shows that the proposed model consistently outperforms ST-ResNet and several other typical DL-based models on prediction accuracy. Furthermore, we discuss the distribution of prediction errors and the contributions of the different spatio-temporal patterns." @default.
- W2968900629 created "2019-08-22" @default.
- W2968900629 creator A5015596416 @default.
- W2968900629 creator A5018336762 @default.
- W2968900629 creator A5060379063 @default.
- W2968900629 creator A5075660642 @default.
- W2968900629 creator A5085700988 @default.
- W2968900629 creator A5090707739 @default.
- W2968900629 date "2019-08-14" @default.
- W2968900629 modified "2023-09-30" @default.
- W2968900629 title "A hybrid integrated deep learning model for the prediction of citywide spatio-temporal flow volumes" @default.
- W2968900629 cites W1806650721 @default.
- W2968900629 cites W1972901764 @default.
- W2968900629 cites W2004353783 @default.
- W2968900629 cites W2007322170 @default.
- W2968900629 cites W2009076082 @default.
- W2968900629 cites W2042395557 @default.
- W2968900629 cites W2064675550 @default.
- W2968900629 cites W2100495367 @default.
- W2968900629 cites W2112738128 @default.
- W2968900629 cites W2150498351 @default.
- W2968900629 cites W2170785963 @default.
- W2968900629 cites W2299655942 @default.
- W2968900629 cites W2302719757 @default.
- W2968900629 cites W2407756320 @default.
- W2968900629 cites W2609832296 @default.
- W2968900629 cites W2695874637 @default.
- W2968900629 cites W2773687962 @default.
- W2968900629 cites W2802126623 @default.
- W2968900629 cites W2903645654 @default.
- W2968900629 cites W2919115771 @default.
- W2968900629 cites W2964319113 @default.
- W2968900629 cites W4235978731 @default.
- W2968900629 cites W4247806668 @default.
- W2968900629 cites W4250948215 @default.
- W2968900629 doi "https://doi.org/10.1080/13658816.2019.1652303" @default.
- W2968900629 hasPublicationYear "2019" @default.
- W2968900629 type Work @default.
- W2968900629 sameAs 2968900629 @default.
- W2968900629 citedByCount "45" @default.
- W2968900629 countsByYear W29689006292019 @default.
- W2968900629 countsByYear W29689006292020 @default.
- W2968900629 countsByYear W29689006292021 @default.
- W2968900629 countsByYear W29689006292022 @default.
- W2968900629 countsByYear W29689006292023 @default.
- W2968900629 crossrefType "journal-article" @default.
- W2968900629 hasAuthorship W2968900629A5015596416 @default.
- W2968900629 hasAuthorship W2968900629A5018336762 @default.
- W2968900629 hasAuthorship W2968900629A5060379063 @default.
- W2968900629 hasAuthorship W2968900629A5075660642 @default.
- W2968900629 hasAuthorship W2968900629A5085700988 @default.
- W2968900629 hasAuthorship W2968900629A5090707739 @default.
- W2968900629 hasBestOaLocation W29689006292 @default.
- W2968900629 hasConcept C108583219 @default.
- W2968900629 hasConcept C154945302 @default.
- W2968900629 hasConcept C205649164 @default.
- W2968900629 hasConcept C2524010 @default.
- W2968900629 hasConcept C33923547 @default.
- W2968900629 hasConcept C38349280 @default.
- W2968900629 hasConcept C39432304 @default.
- W2968900629 hasConcept C41008148 @default.
- W2968900629 hasConcept C58640448 @default.
- W2968900629 hasConceptScore W2968900629C108583219 @default.
- W2968900629 hasConceptScore W2968900629C154945302 @default.
- W2968900629 hasConceptScore W2968900629C205649164 @default.
- W2968900629 hasConceptScore W2968900629C2524010 @default.
- W2968900629 hasConceptScore W2968900629C33923547 @default.
- W2968900629 hasConceptScore W2968900629C38349280 @default.
- W2968900629 hasConceptScore W2968900629C39432304 @default.
- W2968900629 hasConceptScore W2968900629C41008148 @default.
- W2968900629 hasConceptScore W2968900629C58640448 @default.
- W2968900629 hasIssue "4" @default.
- W2968900629 hasLocation W29689006291 @default.
- W2968900629 hasLocation W29689006292 @default.
- W2968900629 hasLocation W29689006293 @default.
- W2968900629 hasOpenAccess W2968900629 @default.
- W2968900629 hasPrimaryLocation W29689006291 @default.
- W2968900629 hasRelatedWork W2126887587 @default.
- W2968900629 hasRelatedWork W2731899572 @default.
- W2968900629 hasRelatedWork W2748952813 @default.
- W2968900629 hasRelatedWork W2899084033 @default.
- W2968900629 hasRelatedWork W2939353110 @default.
- W2968900629 hasRelatedWork W2941846814 @default.
- W2968900629 hasRelatedWork W2948658236 @default.
- W2968900629 hasRelatedWork W3009238340 @default.
- W2968900629 hasRelatedWork W3215138031 @default.
- W2968900629 hasRelatedWork W4230611425 @default.
- W2968900629 hasVolume "34" @default.
- W2968900629 isParatext "false" @default.
- W2968900629 isRetracted "false" @default.
- W2968900629 magId "2968900629" @default.
- W2968900629 workType "article" @default.