Matches in SemOpenAlex for { <https://semopenalex.org/work/W2968968404> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W2968968404 abstract "We demonstrate an autonomous ground robot capable of exploring unknown indoor environments for reconstructing their 2D maps. This problem has been traditionally tackled by geometric heuristics and information theory. More recently, deep learning and reinforcement learning based approaches have been proposed to learn exploration behavior in an end-to-end manner. We present a method that combines the strengths of these different approaches. Specifically, we employ a state-of-the-art generative neural network to predict unknown regions of a partially explored map, and use the prediction to enhance the exploration in an information-theoretic manner. We evaluate our system in simulation using floor plans of real buildings. We also present comparisons with traditional methods which demonstrate the advantage of our method in terms of exploration efficiency. We retain an advantage over end-to-end learned exploration methods in that the robot's behavior is easily explicable in terms of the predicted map." @default.
- W2968968404 created "2019-08-22" @default.
- W2968968404 creator A5059978731 @default.
- W2968968404 creator A5061058174 @default.
- W2968968404 creator A5065361041 @default.
- W2968968404 creator A5080707476 @default.
- W2968968404 creator A5084953118 @default.
- W2968968404 date "2019-05-01" @default.
- W2968968404 modified "2023-10-16" @default.
- W2968968404 title "Learned Map Prediction for Enhanced Mobile Robot Exploration" @default.
- W2968968404 cites W1554244739 @default.
- W2968968404 cites W1601378499 @default.
- W2968968404 cites W1684737195 @default.
- W2968968404 cites W1876676194 @default.
- W2968968404 cites W1976953317 @default.
- W2968968404 cites W1999050017 @default.
- W2968968404 cites W2006003168 @default.
- W2968968404 cites W2020275273 @default.
- W2968968404 cites W2024162894 @default.
- W2968968404 cites W2040370888 @default.
- W2968968404 cites W2076518796 @default.
- W2968968404 cites W2089437550 @default.
- W2968968404 cites W2103009569 @default.
- W2968968404 cites W2107667896 @default.
- W2968968404 cites W2117539524 @default.
- W2968968404 cites W2118890998 @default.
- W2968968404 cites W2119398487 @default.
- W2968968404 cites W2150304237 @default.
- W2968968404 cites W2159477781 @default.
- W2968968404 cites W2172103629 @default.
- W2968968404 cites W2194775991 @default.
- W2968968404 cites W2198547365 @default.
- W2968968404 cites W2293078015 @default.
- W2968968404 cites W2529528107 @default.
- W2968968404 cites W2564666437 @default.
- W2968968404 cites W2593841437 @default.
- W2968968404 cites W2738588019 @default.
- W2968968404 cites W2769509614 @default.
- W2968968404 cites W2771342126 @default.
- W2968968404 cites W2771728020 @default.
- W2968968404 cites W2808284004 @default.
- W2968968404 cites W2890066602 @default.
- W2968968404 cites W2897019915 @default.
- W2968968404 cites W2963917315 @default.
- W2968968404 cites W3043547428 @default.
- W2968968404 cites W3104062571 @default.
- W2968968404 cites W4251742697 @default.
- W2968968404 doi "https://doi.org/10.1109/icra.2019.8793769" @default.
- W2968968404 hasPublicationYear "2019" @default.
- W2968968404 type Work @default.
- W2968968404 sameAs 2968968404 @default.
- W2968968404 citedByCount "56" @default.
- W2968968404 countsByYear W29689684042019 @default.
- W2968968404 countsByYear W29689684042020 @default.
- W2968968404 countsByYear W29689684042021 @default.
- W2968968404 countsByYear W29689684042022 @default.
- W2968968404 countsByYear W29689684042023 @default.
- W2968968404 crossrefType "proceedings-article" @default.
- W2968968404 hasAuthorship W2968968404A5059978731 @default.
- W2968968404 hasAuthorship W2968968404A5061058174 @default.
- W2968968404 hasAuthorship W2968968404A5065361041 @default.
- W2968968404 hasAuthorship W2968968404A5080707476 @default.
- W2968968404 hasAuthorship W2968968404A5084953118 @default.
- W2968968404 hasConcept C111919701 @default.
- W2968968404 hasConcept C119857082 @default.
- W2968968404 hasConcept C127705205 @default.
- W2968968404 hasConcept C154945302 @default.
- W2968968404 hasConcept C19966478 @default.
- W2968968404 hasConcept C41008148 @default.
- W2968968404 hasConcept C50644808 @default.
- W2968968404 hasConcept C90509273 @default.
- W2968968404 hasConcept C97541855 @default.
- W2968968404 hasConceptScore W2968968404C111919701 @default.
- W2968968404 hasConceptScore W2968968404C119857082 @default.
- W2968968404 hasConceptScore W2968968404C127705205 @default.
- W2968968404 hasConceptScore W2968968404C154945302 @default.
- W2968968404 hasConceptScore W2968968404C19966478 @default.
- W2968968404 hasConceptScore W2968968404C41008148 @default.
- W2968968404 hasConceptScore W2968968404C50644808 @default.
- W2968968404 hasConceptScore W2968968404C90509273 @default.
- W2968968404 hasConceptScore W2968968404C97541855 @default.
- W2968968404 hasLocation W29689684041 @default.
- W2968968404 hasOpenAccess W2968968404 @default.
- W2968968404 hasPrimaryLocation W29689684041 @default.
- W2968968404 hasRelatedWork W2163808368 @default.
- W2968968404 hasRelatedWork W260766989 @default.
- W2968968404 hasRelatedWork W2694175881 @default.
- W2968968404 hasRelatedWork W2959276766 @default.
- W2968968404 hasRelatedWork W2961085424 @default.
- W2968968404 hasRelatedWork W3037422413 @default.
- W2968968404 hasRelatedWork W4206589974 @default.
- W2968968404 hasRelatedWork W4206669594 @default.
- W2968968404 hasRelatedWork W4295941380 @default.
- W2968968404 hasRelatedWork W4319083788 @default.
- W2968968404 isParatext "false" @default.
- W2968968404 isRetracted "false" @default.
- W2968968404 magId "2968968404" @default.
- W2968968404 workType "article" @default.