Matches in SemOpenAlex for { <https://semopenalex.org/work/W2969010442> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W2969010442 abstract "In the current era, data are growing with a faster rate in terms of exponential form where these data create a major challenge for suitable classification to classify the statistical data. The relevance of this topic is extraction of data, insights, mining of information from the dataset with an efficient and faster manner has attracted attention towards the best classification strategy. This paper presents a Ranger Random forest (RRF) algorithm for high-dimensional data classification. Random Forest (RF) has been treated as a most popular ensemble technique of classification due to its measure variable importance, out-of-bag error, proximities, etc. To make the classification constraint possible, in this paper, we use three different datasets in order to accommodate the runtime and memory utilization effectively with the same efficiency as given by the traditional random forest. We also depict the improvements of Random Forest in terms of computational time and memory without affecting the efficiency of the traditional Random Forest. Experimental results show that the proposed RRF outperforms with others in terms of memory utilization and computation time." @default.
- W2969010442 created "2019-08-22" @default.
- W2969010442 creator A5043763331 @default.
- W2969010442 creator A5059661467 @default.
- W2969010442 creator A5070563871 @default.
- W2969010442 date "2019-08-18" @default.
- W2969010442 modified "2023-10-16" @default.
- W2969010442 title "RRF-BD: Ranger Random Forest Algorithm for Big Data Classification" @default.
- W2969010442 cites W1906410036 @default.
- W2969010442 cites W1945743190 @default.
- W2969010442 cites W1994307947 @default.
- W2969010442 cites W2002353621 @default.
- W2969010442 cites W2037036168 @default.
- W2969010442 cites W2084139018 @default.
- W2969010442 cites W2121885753 @default.
- W2969010442 cites W2122356930 @default.
- W2969010442 cites W2132424470 @default.
- W2969010442 cites W2161245845 @default.
- W2969010442 cites W2315756291 @default.
- W2969010442 cites W2399979509 @default.
- W2969010442 cites W2591292252 @default.
- W2969010442 cites W2911964244 @default.
- W2969010442 cites W2963100393 @default.
- W2969010442 cites W3099478002 @default.
- W2969010442 cites W4238798796 @default.
- W2969010442 doi "https://doi.org/10.1007/978-981-13-8676-3_2" @default.
- W2969010442 hasPublicationYear "2019" @default.
- W2969010442 type Work @default.
- W2969010442 sameAs 2969010442 @default.
- W2969010442 citedByCount "0" @default.
- W2969010442 crossrefType "book-chapter" @default.
- W2969010442 hasAuthorship W2969010442A5043763331 @default.
- W2969010442 hasAuthorship W2969010442A5059661467 @default.
- W2969010442 hasAuthorship W2969010442A5070563871 @default.
- W2969010442 hasConcept C11413529 @default.
- W2969010442 hasConcept C124101348 @default.
- W2969010442 hasConcept C154945302 @default.
- W2969010442 hasConcept C158154518 @default.
- W2969010442 hasConcept C169258074 @default.
- W2969010442 hasConcept C17744445 @default.
- W2969010442 hasConcept C199539241 @default.
- W2969010442 hasConcept C2524010 @default.
- W2969010442 hasConcept C2776036281 @default.
- W2969010442 hasConcept C33923547 @default.
- W2969010442 hasConcept C41008148 @default.
- W2969010442 hasConcept C45374587 @default.
- W2969010442 hasConcept C75684735 @default.
- W2969010442 hasConceptScore W2969010442C11413529 @default.
- W2969010442 hasConceptScore W2969010442C124101348 @default.
- W2969010442 hasConceptScore W2969010442C154945302 @default.
- W2969010442 hasConceptScore W2969010442C158154518 @default.
- W2969010442 hasConceptScore W2969010442C169258074 @default.
- W2969010442 hasConceptScore W2969010442C17744445 @default.
- W2969010442 hasConceptScore W2969010442C199539241 @default.
- W2969010442 hasConceptScore W2969010442C2524010 @default.
- W2969010442 hasConceptScore W2969010442C2776036281 @default.
- W2969010442 hasConceptScore W2969010442C33923547 @default.
- W2969010442 hasConceptScore W2969010442C41008148 @default.
- W2969010442 hasConceptScore W2969010442C45374587 @default.
- W2969010442 hasConceptScore W2969010442C75684735 @default.
- W2969010442 hasLocation W29690104421 @default.
- W2969010442 hasOpenAccess W2969010442 @default.
- W2969010442 hasPrimaryLocation W29690104421 @default.
- W2969010442 hasRelatedWork W10715555 @default.
- W2969010442 hasRelatedWork W12634471 @default.
- W2969010442 hasRelatedWork W12783365 @default.
- W2969010442 hasRelatedWork W13692438 @default.
- W2969010442 hasRelatedWork W193554 @default.
- W2969010442 hasRelatedWork W2124813 @default.
- W2969010442 hasRelatedWork W4593459 @default.
- W2969010442 hasRelatedWork W9362070 @default.
- W2969010442 hasRelatedWork W9481221 @default.
- W2969010442 hasRelatedWork W1916988 @default.
- W2969010442 isParatext "false" @default.
- W2969010442 isRetracted "false" @default.
- W2969010442 magId "2969010442" @default.
- W2969010442 workType "book-chapter" @default.