Matches in SemOpenAlex for { <https://semopenalex.org/work/W2969023786> ?p ?o ?g. }
- W2969023786 endingPage "1899" @default.
- W2969023786 startingPage "1899" @default.
- W2969023786 abstract "The accurate and timely detection of forest disturbances can provide valuable information for effective forest management. Combining dense time series observations from optical and synthetic aperture radar satellites has the potential to improve large-area forest monitoring. For various disturbances, machine learning algorithms might accurately characterize forest changes. However, there is limited knowledge especially on the use of machine learning algorithms to detect forest disturbances through hybrid approaches that combine different data sources. This study investigated the use of dense Landsat 8 and Sentinel-1 time series data for detecting disturbances in tropical seasonal forests based on a machine learning algorithm. The random forest algorithm was used to predict the disturbance probability of each Landsat 8 and Sentinel-1 observation using variables derived from a harmonic regression model, which characterized seasonality and disturbance-related changes. The time series disturbance probabilities of both sensors were then combined to detect forest disturbances in each pixel. The results showed that the combination of Landsat 8 and Sentinel-1 achieved an overall accuracy of 83.6% for disturbance detection, which was higher than the disturbance detection using only Landsat 8 (78.3%) or Sentinel-1 (75.5%). Additionally, more timely disturbance detection was achieved by combining Landsat 8 and Sentinel-1. Small-scale disturbances caused by logging led to large omissions of disturbances; however, other disturbances were detected with relatively high accuracy. Although disturbance detection using only Sentinel-1 data had low accuracy in this study, the combination with Landsat 8 data improved the accuracy of detection, indicating the value of dense Landsat 8 and Sentinel-1 time series data for timely and accurate disturbance detection." @default.
- W2969023786 created "2019-08-22" @default.
- W2969023786 creator A5017572268 @default.
- W2969023786 creator A5049769506 @default.
- W2969023786 creator A5083726610 @default.
- W2969023786 date "2019-08-14" @default.
- W2969023786 modified "2023-10-17" @default.
- W2969023786 title "Detecting Forest Changes Using Dense Landsat 8 and Sentinel-1 Time Series Data in Tropical Seasonal Forests" @default.
- W2969023786 cites W1831050183 @default.
- W2969023786 cites W1889848888 @default.
- W2969023786 cites W1965825034 @default.
- W2969023786 cites W1976376898 @default.
- W2969023786 cites W197907523 @default.
- W2969023786 cites W1979210946 @default.
- W2969023786 cites W1980614834 @default.
- W2969023786 cites W1991837234 @default.
- W2969023786 cites W2014933892 @default.
- W2969023786 cites W2019652370 @default.
- W2969023786 cites W2028240797 @default.
- W2969023786 cites W2030864384 @default.
- W2969023786 cites W2031600437 @default.
- W2969023786 cites W2036524212 @default.
- W2969023786 cites W2042692910 @default.
- W2969023786 cites W2050269337 @default.
- W2969023786 cites W2051177122 @default.
- W2969023786 cites W2055718260 @default.
- W2969023786 cites W2063907334 @default.
- W2969023786 cites W2073241381 @default.
- W2969023786 cites W2084744129 @default.
- W2969023786 cites W2086154193 @default.
- W2969023786 cites W2090491989 @default.
- W2969023786 cites W2091720886 @default.
- W2969023786 cites W2092141993 @default.
- W2969023786 cites W2095472131 @default.
- W2969023786 cites W2102216719 @default.
- W2969023786 cites W2102851029 @default.
- W2969023786 cites W2117996123 @default.
- W2969023786 cites W2139709933 @default.
- W2969023786 cites W2140908571 @default.
- W2969023786 cites W2157675604 @default.
- W2969023786 cites W2169087452 @default.
- W2969023786 cites W2181171301 @default.
- W2969023786 cites W2188083314 @default.
- W2969023786 cites W2247062920 @default.
- W2969023786 cites W2261059368 @default.
- W2969023786 cites W2269369078 @default.
- W2969023786 cites W2288373547 @default.
- W2969023786 cites W2295813245 @default.
- W2969023786 cites W2307094448 @default.
- W2969023786 cites W2323137278 @default.
- W2969023786 cites W2344328155 @default.
- W2969023786 cites W2374980502 @default.
- W2969023786 cites W2397914484 @default.
- W2969023786 cites W2472257179 @default.
- W2969023786 cites W2559468428 @default.
- W2969023786 cites W2585309444 @default.
- W2969023786 cites W2606986252 @default.
- W2969023786 cites W2625277120 @default.
- W2969023786 cites W2725897987 @default.
- W2969023786 cites W2735042947 @default.
- W2969023786 cites W2739505165 @default.
- W2969023786 cites W2766826930 @default.
- W2969023786 cites W2791930881 @default.
- W2969023786 cites W2794463910 @default.
- W2969023786 cites W2794891691 @default.
- W2969023786 cites W2796746338 @default.
- W2969023786 cites W2803433330 @default.
- W2969023786 cites W2808487575 @default.
- W2969023786 cites W2809079570 @default.
- W2969023786 cites W2811408448 @default.
- W2969023786 cites W2814763219 @default.
- W2969023786 cites W2883925605 @default.
- W2969023786 cites W2886438884 @default.
- W2969023786 cites W2895854890 @default.
- W2969023786 cites W2896437486 @default.
- W2969023786 cites W2903301943 @default.
- W2969023786 cites W2907984206 @default.
- W2969023786 cites W2913065079 @default.
- W2969023786 cites W2914599461 @default.
- W2969023786 cites W2920930972 @default.
- W2969023786 cites W2937677292 @default.
- W2969023786 cites W2941722341 @default.
- W2969023786 doi "https://doi.org/10.3390/rs11161899" @default.
- W2969023786 hasPublicationYear "2019" @default.
- W2969023786 type Work @default.
- W2969023786 sameAs 2969023786 @default.
- W2969023786 citedByCount "44" @default.
- W2969023786 countsByYear W29690237862020 @default.
- W2969023786 countsByYear W29690237862021 @default.
- W2969023786 countsByYear W29690237862022 @default.
- W2969023786 countsByYear W29690237862023 @default.
- W2969023786 crossrefType "journal-article" @default.
- W2969023786 hasAuthorship W2969023786A5017572268 @default.
- W2969023786 hasAuthorship W2969023786A5049769506 @default.
- W2969023786 hasAuthorship W2969023786A5083726610 @default.
- W2969023786 hasBestOaLocation W29690237861 @default.
- W2969023786 hasConcept C119857082 @default.
- W2969023786 hasConcept C125620115 @default.