Matches in SemOpenAlex for { <https://semopenalex.org/work/W2969071806> ?p ?o ?g. }
- W2969071806 abstract "While the application of word embedding models to downstream Natural Language Processing (NLP) tasks has been shown to be successful, the benefits for low-resource languages is somewhat limited due to lack of adequate data for training the models. However, NLP research efforts for low-resource languages have focused on constantly seeking ways to harness pre-trained models to improve the performance of NLP systems built to process these languages without the need to re-invent the wheel. One such language is Welsh and therefore, in this paper, we present the results of our experiments on learning a simple multi-task neural network model for part-of-speech and semantic tagging for Welsh using a pre-trained embedding model from FastText. Our model’s performance was compared with those of the existing rule-based stand-alone taggers for part-of-speech and semantic taggers. Despite its simplicity and capacity to perform both tasks simultaneously, our tagger compared very well with the existing taggers." @default.
- W2969071806 created "2019-08-22" @default.
- W2969071806 creator A5019967091 @default.
- W2969071806 creator A5041050521 @default.
- W2969071806 creator A5058785189 @default.
- W2969071806 creator A5070134402 @default.
- W2969071806 creator A5078509849 @default.
- W2969071806 date "2019-01-01" @default.
- W2969071806 modified "2023-09-26" @default.
- W2969071806 title "Leveraging Pre-Trained Embeddings for Welsh Taggers" @default.
- W2969071806 cites W1489213086 @default.
- W2969071806 cites W1490304187 @default.
- W2969071806 cites W1492880262 @default.
- W2969071806 cites W1596986901 @default.
- W2969071806 cites W1607983314 @default.
- W2969071806 cites W1665214252 @default.
- W2969071806 cites W2046592963 @default.
- W2969071806 cites W2095705004 @default.
- W2969071806 cites W2116873850 @default.
- W2969071806 cites W2139645402 @default.
- W2969071806 cites W2251053923 @default.
- W2969071806 cites W2288894564 @default.
- W2969071806 cites W2402144811 @default.
- W2969071806 cites W2424671613 @default.
- W2969071806 cites W2514820445 @default.
- W2969071806 cites W2523246573 @default.
- W2969071806 cites W2623965906 @default.
- W2969071806 cites W2735393842 @default.
- W2969071806 cites W2741986357 @default.
- W2969071806 cites W2760535273 @default.
- W2969071806 cites W2788190679 @default.
- W2969071806 cites W2789206504 @default.
- W2969071806 cites W2798778171 @default.
- W2969071806 cites W2803502351 @default.
- W2969071806 cites W2803520058 @default.
- W2969071806 cites W2804259771 @default.
- W2969071806 cites W2805443429 @default.
- W2969071806 cites W2806834924 @default.
- W2969071806 cites W2896649846 @default.
- W2969071806 cites W2899455119 @default.
- W2969071806 cites W2911748720 @default.
- W2969071806 cites W2911926960 @default.
- W2969071806 cites W2949117887 @default.
- W2969071806 cites W2963412893 @default.
- W2969071806 cites W2963667932 @default.
- W2969071806 cites W2963837895 @default.
- W2969071806 cites W2963888891 @default.
- W2969071806 cites W2964082031 @default.
- W2969071806 cites W2964121744 @default.
- W2969071806 cites W3121547375 @default.
- W2969071806 doi "https://doi.org/10.18653/v1/w19-4332" @default.
- W2969071806 hasPublicationYear "2019" @default.
- W2969071806 type Work @default.
- W2969071806 sameAs 2969071806 @default.
- W2969071806 citedByCount "3" @default.
- W2969071806 countsByYear W29690718062020 @default.
- W2969071806 countsByYear W29690718062021 @default.
- W2969071806 countsByYear W29690718062023 @default.
- W2969071806 crossrefType "proceedings-article" @default.
- W2969071806 hasAuthorship W2969071806A5019967091 @default.
- W2969071806 hasAuthorship W2969071806A5041050521 @default.
- W2969071806 hasAuthorship W2969071806A5058785189 @default.
- W2969071806 hasAuthorship W2969071806A5070134402 @default.
- W2969071806 hasAuthorship W2969071806A5078509849 @default.
- W2969071806 hasBestOaLocation W29690718061 @default.
- W2969071806 hasConcept C138885662 @default.
- W2969071806 hasConcept C154945302 @default.
- W2969071806 hasConcept C199360897 @default.
- W2969071806 hasConcept C204321447 @default.
- W2969071806 hasConcept C2777462759 @default.
- W2969071806 hasConcept C2780769345 @default.
- W2969071806 hasConcept C41008148 @default.
- W2969071806 hasConcept C41608201 @default.
- W2969071806 hasConcept C41895202 @default.
- W2969071806 hasConcept C98045186 @default.
- W2969071806 hasConceptScore W2969071806C138885662 @default.
- W2969071806 hasConceptScore W2969071806C154945302 @default.
- W2969071806 hasConceptScore W2969071806C199360897 @default.
- W2969071806 hasConceptScore W2969071806C204321447 @default.
- W2969071806 hasConceptScore W2969071806C2777462759 @default.
- W2969071806 hasConceptScore W2969071806C2780769345 @default.
- W2969071806 hasConceptScore W2969071806C41008148 @default.
- W2969071806 hasConceptScore W2969071806C41608201 @default.
- W2969071806 hasConceptScore W2969071806C41895202 @default.
- W2969071806 hasConceptScore W2969071806C98045186 @default.
- W2969071806 hasLocation W29690718061 @default.
- W2969071806 hasOpenAccess W2969071806 @default.
- W2969071806 hasPrimaryLocation W29690718061 @default.
- W2969071806 hasRelatedWork W2398825887 @default.
- W2969071806 hasRelatedWork W2772215414 @default.
- W2969071806 hasRelatedWork W2790173704 @default.
- W2969071806 hasRelatedWork W2798669739 @default.
- W2969071806 hasRelatedWork W2984206076 @default.
- W2969071806 hasRelatedWork W3086845375 @default.
- W2969071806 hasRelatedWork W3158961393 @default.
- W2969071806 hasRelatedWork W4289299384 @default.
- W2969071806 hasRelatedWork W4321496520 @default.
- W2969071806 hasRelatedWork W4323981018 @default.
- W2969071806 isParatext "false" @default.
- W2969071806 isRetracted "false" @default.