Matches in SemOpenAlex for { <https://semopenalex.org/work/W2969132017> ?p ?o ?g. }
- W2969132017 endingPage "3295" @default.
- W2969132017 startingPage "3280" @default.
- W2969132017 abstract "Histone Deacetylases (HDACs) play a significant role in the regulation of gene expression by modifying histones and non-histone substrates. Since they are key regulators in the reversible epigenetic mechanism, they are considered as promising drug targets for the treatment of various cancers. In the present study, we have developed a workflow for identification of HDAC1 inhibitors using a multistage virtual screening approach from Maybridge and Chembridge chemical library. Initially, a support vector machine based classification model was generated, followed by generation of a zinc-binding group (ZBG) based pharmacophore model. The hits screened from these models were further subjected to molecular docking. Finally, a set of twenty-three molecules were selected from Maybridge and Chembridge library. The biological evaluation of these hits revealed that three out of the twenty-three tested compounds are showing HDAC1 inhibition along with the moderate anti-proliferative activity. It was found that the identified inhibitors are exerting chromosomal loss effect in growing yeast cells. Further, to extend the activity spectrum of the identified inhibitors, the optimization guidelines were drawn with the hydration site mapping approach by using in silico tool Watermap.Communicated by Ramaswamy H. Sarma." @default.
- W2969132017 created "2019-08-22" @default.
- W2969132017 creator A5038388666 @default.
- W2969132017 creator A5044206381 @default.
- W2969132017 creator A5058114124 @default.
- W2969132017 creator A5059679736 @default.
- W2969132017 creator A5073707664 @default.
- W2969132017 creator A5075702722 @default.
- W2969132017 creator A5085321809 @default.
- W2969132017 date "2019-09-09" @default.
- W2969132017 modified "2023-10-15" @default.
- W2969132017 title "Identification of potential histone deacetylase1 (HDAC1) inhibitors using multistep virtual screening approach including SVM model, pharmacophore modeling, molecular docking and biological evaluation" @default.
- W2969132017 cites W1013607244 @default.
- W2969132017 cites W1493846190 @default.
- W2969132017 cites W1965617737 @default.
- W2969132017 cites W1967434207 @default.
- W2969132017 cites W1968319881 @default.
- W2969132017 cites W1971652848 @default.
- W2969132017 cites W1974456689 @default.
- W2969132017 cites W1975157121 @default.
- W2969132017 cites W1975692560 @default.
- W2969132017 cites W1981569724 @default.
- W2969132017 cites W1988301066 @default.
- W2969132017 cites W1988811573 @default.
- W2969132017 cites W1993450765 @default.
- W2969132017 cites W1997300509 @default.
- W2969132017 cites W1999862493 @default.
- W2969132017 cites W2003394088 @default.
- W2969132017 cites W2017640164 @default.
- W2969132017 cites W2022285476 @default.
- W2969132017 cites W2025162481 @default.
- W2969132017 cites W2028265816 @default.
- W2969132017 cites W2039366858 @default.
- W2969132017 cites W2045496528 @default.
- W2969132017 cites W2046842230 @default.
- W2969132017 cites W2046977878 @default.
- W2969132017 cites W2059024085 @default.
- W2969132017 cites W2059508652 @default.
- W2969132017 cites W2061479978 @default.
- W2969132017 cites W2061681854 @default.
- W2969132017 cites W2062181605 @default.
- W2969132017 cites W2067161121 @default.
- W2969132017 cites W2080057665 @default.
- W2969132017 cites W2081675364 @default.
- W2969132017 cites W2086442285 @default.
- W2969132017 cites W2089077371 @default.
- W2969132017 cites W2090906911 @default.
- W2969132017 cites W2091671592 @default.
- W2969132017 cites W20935937 @default.
- W2969132017 cites W2094383719 @default.
- W2969132017 cites W2109329999 @default.
- W2969132017 cites W2113846323 @default.
- W2969132017 cites W2131126754 @default.
- W2969132017 cites W2132629607 @default.
- W2969132017 cites W2146841526 @default.
- W2969132017 cites W2153604880 @default.
- W2969132017 cites W2153635508 @default.
- W2969132017 cites W2159887157 @default.
- W2969132017 cites W2165638033 @default.
- W2969132017 cites W2168588482 @default.
- W2969132017 cites W2176625501 @default.
- W2969132017 cites W2198846735 @default.
- W2969132017 cites W2200391720 @default.
- W2969132017 cites W2225791890 @default.
- W2969132017 cites W2233984646 @default.
- W2969132017 cites W2283422149 @default.
- W2969132017 cites W2312573634 @default.
- W2969132017 cites W2317645535 @default.
- W2969132017 cites W2318188375 @default.
- W2969132017 cites W2334650916 @default.
- W2969132017 cites W2334651569 @default.
- W2969132017 cites W2336389295 @default.
- W2969132017 cites W2547561151 @default.
- W2969132017 cites W2617696058 @default.
- W2969132017 cites W2756929056 @default.
- W2969132017 cites W2792170780 @default.
- W2969132017 cites W2793087014 @default.
- W2969132017 cites W2891534559 @default.
- W2969132017 cites W2904681384 @default.
- W2969132017 cites W2911163562 @default.
- W2969132017 cites W2951802849 @default.
- W2969132017 cites W305248552 @default.
- W2969132017 cites W4248107770 @default.
- W2969132017 doi "https://doi.org/10.1080/07391102.2019.1654925" @default.
- W2969132017 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31411124" @default.
- W2969132017 hasPublicationYear "2019" @default.
- W2969132017 type Work @default.
- W2969132017 sameAs 2969132017 @default.
- W2969132017 citedByCount "13" @default.
- W2969132017 countsByYear W29691320172019 @default.
- W2969132017 countsByYear W29691320172020 @default.
- W2969132017 countsByYear W29691320172021 @default.
- W2969132017 countsByYear W29691320172022 @default.
- W2969132017 countsByYear W29691320172023 @default.
- W2969132017 crossrefType "journal-article" @default.
- W2969132017 hasAuthorship W2969132017A5038388666 @default.
- W2969132017 hasAuthorship W2969132017A5044206381 @default.
- W2969132017 hasAuthorship W2969132017A5058114124 @default.