Matches in SemOpenAlex for { <https://semopenalex.org/work/W2969149022> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W2969149022 abstract "Many data scientists are currently pointing out that the amount of Machine Learning (ML) research that will cross into practice will depend, not just on the ability of the specialized algorithms used to scrutinize positive/negative examples, but also on the quality of the data exploited for training those algorithms. Our experience, while training a neural network with a huge dataset comprised of over fifteen million water meter readings, confirms such conjecture. In this paper, we report on the actions we took to extrapolate from that database just those data that could correctly represent the complex statistical phenomenon in play. With an adequate re-organization of those data, we got an interesting, yet controversial, result. On the one hand, we improved the accuracy on the prediction when a water meter fails/needs disassembly based on a history of water consumption measurements, thus making smarter a meter maintenance process; on the other hand, all this came with the paradox of a (statistical) transformation of the initial dataset: while we alleviate a problem with a restructured and better interpretable data model, we simultaneously change the replicated form of those data." @default.
- W2969149022 created "2019-08-22" @default.
- W2969149022 creator A5003535009 @default.
- W2969149022 creator A5025338247 @default.
- W2969149022 creator A5034034551 @default.
- W2969149022 creator A5034405366 @default.
- W2969149022 creator A5057135828 @default.
- W2969149022 date "2019-09-25" @default.
- W2969149022 modified "2023-09-26" @default.
- W2969149022 title "A Paradox in ML Design" @default.
- W2969149022 cites W1901616594 @default.
- W2969149022 cites W1964282673 @default.
- W2969149022 cites W2798212569 @default.
- W2969149022 cites W2907543363 @default.
- W2969149022 cites W2912546609 @default.
- W2969149022 cites W2963917042 @default.
- W2969149022 cites W841229804 @default.
- W2969149022 doi "https://doi.org/10.1145/3342428.3342685" @default.
- W2969149022 hasPublicationYear "2019" @default.
- W2969149022 type Work @default.
- W2969149022 sameAs 2969149022 @default.
- W2969149022 citedByCount "7" @default.
- W2969149022 countsByYear W29691490222019 @default.
- W2969149022 countsByYear W29691490222020 @default.
- W2969149022 countsByYear W29691490222021 @default.
- W2969149022 countsByYear W29691490222022 @default.
- W2969149022 crossrefType "proceedings-article" @default.
- W2969149022 hasAuthorship W2969149022A5003535009 @default.
- W2969149022 hasAuthorship W2969149022A5025338247 @default.
- W2969149022 hasAuthorship W2969149022A5034034551 @default.
- W2969149022 hasAuthorship W2969149022A5034405366 @default.
- W2969149022 hasAuthorship W2969149022A5057135828 @default.
- W2969149022 hasConcept C104317684 @default.
- W2969149022 hasConcept C10558101 @default.
- W2969149022 hasConcept C111472728 @default.
- W2969149022 hasConcept C111919701 @default.
- W2969149022 hasConcept C119599485 @default.
- W2969149022 hasConcept C119857082 @default.
- W2969149022 hasConcept C121332964 @default.
- W2969149022 hasConcept C124101348 @default.
- W2969149022 hasConcept C127413603 @default.
- W2969149022 hasConcept C1276947 @default.
- W2969149022 hasConcept C138885662 @default.
- W2969149022 hasConcept C151011524 @default.
- W2969149022 hasConcept C154945302 @default.
- W2969149022 hasConcept C185592680 @default.
- W2969149022 hasConcept C204241405 @default.
- W2969149022 hasConcept C2522767166 @default.
- W2969149022 hasConcept C2779510800 @default.
- W2969149022 hasConcept C2779530757 @default.
- W2969149022 hasConcept C41008148 @default.
- W2969149022 hasConcept C50644808 @default.
- W2969149022 hasConcept C55493867 @default.
- W2969149022 hasConcept C98045186 @default.
- W2969149022 hasConceptScore W2969149022C104317684 @default.
- W2969149022 hasConceptScore W2969149022C10558101 @default.
- W2969149022 hasConceptScore W2969149022C111472728 @default.
- W2969149022 hasConceptScore W2969149022C111919701 @default.
- W2969149022 hasConceptScore W2969149022C119599485 @default.
- W2969149022 hasConceptScore W2969149022C119857082 @default.
- W2969149022 hasConceptScore W2969149022C121332964 @default.
- W2969149022 hasConceptScore W2969149022C124101348 @default.
- W2969149022 hasConceptScore W2969149022C127413603 @default.
- W2969149022 hasConceptScore W2969149022C1276947 @default.
- W2969149022 hasConceptScore W2969149022C138885662 @default.
- W2969149022 hasConceptScore W2969149022C151011524 @default.
- W2969149022 hasConceptScore W2969149022C154945302 @default.
- W2969149022 hasConceptScore W2969149022C185592680 @default.
- W2969149022 hasConceptScore W2969149022C204241405 @default.
- W2969149022 hasConceptScore W2969149022C2522767166 @default.
- W2969149022 hasConceptScore W2969149022C2779510800 @default.
- W2969149022 hasConceptScore W2969149022C2779530757 @default.
- W2969149022 hasConceptScore W2969149022C41008148 @default.
- W2969149022 hasConceptScore W2969149022C50644808 @default.
- W2969149022 hasConceptScore W2969149022C55493867 @default.
- W2969149022 hasConceptScore W2969149022C98045186 @default.
- W2969149022 hasLocation W29691490221 @default.
- W2969149022 hasOpenAccess W2969149022 @default.
- W2969149022 hasPrimaryLocation W29691490221 @default.
- W2969149022 hasRelatedWork W2961085424 @default.
- W2969149022 hasRelatedWork W3016634996 @default.
- W2969149022 hasRelatedWork W3046775127 @default.
- W2969149022 hasRelatedWork W3170094116 @default.
- W2969149022 hasRelatedWork W4205958290 @default.
- W2969149022 hasRelatedWork W4285260836 @default.
- W2969149022 hasRelatedWork W4286629047 @default.
- W2969149022 hasRelatedWork W4306321456 @default.
- W2969149022 hasRelatedWork W4306674287 @default.
- W2969149022 hasRelatedWork W4224009465 @default.
- W2969149022 isParatext "false" @default.
- W2969149022 isRetracted "false" @default.
- W2969149022 magId "2969149022" @default.
- W2969149022 workType "article" @default.