Matches in SemOpenAlex for { <https://semopenalex.org/work/W2969181508> ?p ?o ?g. }
- W2969181508 endingPage "539" @default.
- W2969181508 startingPage "527" @default.
- W2969181508 abstract "The use of optical coherence tomography (OCT) images is increasing in the medical treatment of age-related macular degeneration (AMD), and thus, the amount of data requiring analysis is increasing. Advances in machine-learning techniques may facilitate processing of large amounts of medical image data. Among deep-learning methods, convolution neural networks (CNNs) show superior image recognition ability. This study aimed to build deep-learning models that could distinguish AMD from healthy OCT scans and to distinguish AMD with and without exudative changes without using a segmentation algorithm. This was a cross-sectional observational clinical study. A total of 1621 spectral domain (SD)-OCT images of patients with AMD and a healthy control group were studied. The first CNN model was trained and validated using 1382 AMD images and 239 normal images. The second transfer-learning model was trained and validated with 721 AMD images with exudative changes and 661 AMD images without any exudate. The attention area of the CNN was described as a heat map by class activation mapping (CAM). In the second model, which classified images into AMD with or without exudative changes, we compared the learning stabilization of models using or not using transfer learning. Using the first CNN model, we could classify AMD and normal OCT images with 100% sensitivity, 91.8% specificity, and 99.0% accuracy. In the second, transfer-learning model, we could classify AMD as having or not having exudative changes, with 98.4% sensitivity, 88.3% specificity, and 93.9% accuracy. CAM successfully described the heat-map area on the OCT images. Including the transfer-learning model in the second model resulted in faster stabilization than when the transfer-learning model was not included. Two computational deep-learning models were developed and evaluated here; both models showed good performance. Automation of the interpretation process by using deep-learning models can save time and improve efficiency. No15073." @default.
- W2969181508 created "2019-08-22" @default.
- W2969181508 creator A5014175129 @default.
- W2969181508 creator A5020906317 @default.
- W2969181508 creator A5030655388 @default.
- W2969181508 creator A5032293652 @default.
- W2969181508 creator A5034787394 @default.
- W2969181508 creator A5038473974 @default.
- W2969181508 creator A5044565334 @default.
- W2969181508 creator A5045324638 @default.
- W2969181508 creator A5049463882 @default.
- W2969181508 creator A5072451434 @default.
- W2969181508 creator A5081776983 @default.
- W2969181508 date "2019-08-12" @default.
- W2969181508 modified "2023-10-12" @default.
- W2969181508 title "Optical Coherence Tomography-Based Deep-Learning Models for Classifying Normal and Age-Related Macular Degeneration and Exudative and Non-Exudative Age-Related Macular Degeneration Changes" @default.
- W2969181508 cites W1989515430 @default.
- W2969181508 cites W1996047957 @default.
- W2969181508 cites W2004117352 @default.
- W2969181508 cites W2007014682 @default.
- W2969181508 cites W2007104622 @default.
- W2969181508 cites W2027607860 @default.
- W2969181508 cites W2069110097 @default.
- W2969181508 cites W2083043469 @default.
- W2969181508 cites W2085712747 @default.
- W2969181508 cites W2095251825 @default.
- W2969181508 cites W2192471031 @default.
- W2969181508 cites W2202644973 @default.
- W2969181508 cites W2295107390 @default.
- W2969181508 cites W2316418129 @default.
- W2969181508 cites W2399141010 @default.
- W2969181508 cites W2580835947 @default.
- W2969181508 cites W2589074029 @default.
- W2969181508 cites W2596556980 @default.
- W2969181508 cites W2598520882 @default.
- W2969181508 cites W2608603966 @default.
- W2969181508 cites W2664267452 @default.
- W2969181508 cites W2758333670 @default.
- W2969181508 cites W2768217608 @default.
- W2969181508 cites W2772059204 @default.
- W2969181508 cites W2797401432 @default.
- W2969181508 cites W2809659847 @default.
- W2969181508 cites W2886281300 @default.
- W2969181508 cites W2886801379 @default.
- W2969181508 cites W2919115771 @default.
- W2969181508 cites W4247214019 @default.
- W2969181508 cites W4297900156 @default.
- W2969181508 doi "https://doi.org/10.1007/s40123-019-00207-y" @default.
- W2969181508 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6858411" @default.
- W2969181508 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31407214" @default.
- W2969181508 hasPublicationYear "2019" @default.
- W2969181508 type Work @default.
- W2969181508 sameAs 2969181508 @default.
- W2969181508 citedByCount "67" @default.
- W2969181508 countsByYear W29691815082020 @default.
- W2969181508 countsByYear W29691815082021 @default.
- W2969181508 countsByYear W29691815082022 @default.
- W2969181508 countsByYear W29691815082023 @default.
- W2969181508 crossrefType "journal-article" @default.
- W2969181508 hasAuthorship W2969181508A5014175129 @default.
- W2969181508 hasAuthorship W2969181508A5020906317 @default.
- W2969181508 hasAuthorship W2969181508A5030655388 @default.
- W2969181508 hasAuthorship W2969181508A5032293652 @default.
- W2969181508 hasAuthorship W2969181508A5034787394 @default.
- W2969181508 hasAuthorship W2969181508A5038473974 @default.
- W2969181508 hasAuthorship W2969181508A5044565334 @default.
- W2969181508 hasAuthorship W2969181508A5045324638 @default.
- W2969181508 hasAuthorship W2969181508A5049463882 @default.
- W2969181508 hasAuthorship W2969181508A5072451434 @default.
- W2969181508 hasAuthorship W2969181508A5081776983 @default.
- W2969181508 hasBestOaLocation W29691815081 @default.
- W2969181508 hasConcept C118487528 @default.
- W2969181508 hasConcept C2776403814 @default.
- W2969181508 hasConcept C2778818243 @default.
- W2969181508 hasConcept C2779354088 @default.
- W2969181508 hasConcept C2910060629 @default.
- W2969181508 hasConcept C71924100 @default.
- W2969181508 hasConceptScore W2969181508C118487528 @default.
- W2969181508 hasConceptScore W2969181508C2776403814 @default.
- W2969181508 hasConceptScore W2969181508C2778818243 @default.
- W2969181508 hasConceptScore W2969181508C2779354088 @default.
- W2969181508 hasConceptScore W2969181508C2910060629 @default.
- W2969181508 hasConceptScore W2969181508C71924100 @default.
- W2969181508 hasIssue "4" @default.
- W2969181508 hasLocation W29691815081 @default.
- W2969181508 hasLocation W29691815082 @default.
- W2969181508 hasLocation W29691815083 @default.
- W2969181508 hasLocation W29691815084 @default.
- W2969181508 hasOpenAccess W2969181508 @default.
- W2969181508 hasPrimaryLocation W29691815081 @default.
- W2969181508 hasRelatedWork W1016677207 @default.
- W2969181508 hasRelatedWork W1032527068 @default.
- W2969181508 hasRelatedWork W1447835669 @default.
- W2969181508 hasRelatedWork W2203904634 @default.
- W2969181508 hasRelatedWork W2496452379 @default.
- W2969181508 hasRelatedWork W2969181508 @default.
- W2969181508 hasRelatedWork W3023885525 @default.
- W2969181508 hasRelatedWork W771610953 @default.