Matches in SemOpenAlex for { <https://semopenalex.org/work/W2969183492> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W2969183492 endingPage "106552" @default.
- W2969183492 startingPage "106552" @default.
- W2969183492 abstract "Advanced data analysis is increasingly popular with materials engineering. There are many interesting applications, e.g., to identify links between material properties and structural behavior. Most of these applications also entail challenges like compliance with safety requirements for parts and components. These challenges often are specific to the engineering domain, which sets them apart from many other disciplines where data-science already is established. To successfully approach materials science problems with machine learning, one has to identify and address these specifics. In this paper, we pursue this question for crack assessment. More specific, we study whether the prediction of critical stress states is feasible only based on simulated surface measurements of a three-point bending structure. To this end, we pursue several approaches to gain insights into crack initiation and material behavior. We compare different data sets and machine-learning methods to identify variables, such as specific surface locations, that are relevant for high prediction accuracy. Based on our analyses, we discuss the applicability of machine learning for component assessment. Finally, we summarize general principles for machine learning with materials and structural engineering." @default.
- W2969183492 created "2019-08-22" @default.
- W2969183492 creator A5032207241 @default.
- W2969183492 creator A5049768806 @default.
- W2969183492 creator A5060160024 @default.
- W2969183492 creator A5081086000 @default.
- W2969183492 date "2019-09-01" @default.
- W2969183492 modified "2023-10-13" @default.
- W2969183492 title "Data-driven crack assessment based on surface measurements" @default.
- W2969183492 cites W2009785953 @default.
- W2969183492 cites W2015449320 @default.
- W2969183492 cites W2035896865 @default.
- W2969183492 cites W2063545248 @default.
- W2969183492 cites W2064675550 @default.
- W2969183492 cites W2071742522 @default.
- W2969183492 cites W2078093994 @default.
- W2969183492 cites W2085139803 @default.
- W2969183492 cites W2092939357 @default.
- W2969183492 cites W2107878631 @default.
- W2969183492 cites W2145992718 @default.
- W2969183492 cites W2318452386 @default.
- W2969183492 cites W2461123336 @default.
- W2969183492 cites W2469732900 @default.
- W2969183492 cites W2490555771 @default.
- W2969183492 cites W2539324467 @default.
- W2969183492 cites W2564078846 @default.
- W2969183492 cites W2607452300 @default.
- W2969183492 cites W2731678075 @default.
- W2969183492 cites W2734256217 @default.
- W2969183492 cites W2777965033 @default.
- W2969183492 cites W2789959669 @default.
- W2969183492 cites W2855289976 @default.
- W2969183492 doi "https://doi.org/10.1016/j.engfracmech.2019.106552" @default.
- W2969183492 hasPublicationYear "2019" @default.
- W2969183492 type Work @default.
- W2969183492 sameAs 2969183492 @default.
- W2969183492 citedByCount "1" @default.
- W2969183492 countsByYear W29691834922023 @default.
- W2969183492 crossrefType "journal-article" @default.
- W2969183492 hasAuthorship W2969183492A5032207241 @default.
- W2969183492 hasAuthorship W2969183492A5049768806 @default.
- W2969183492 hasAuthorship W2969183492A5060160024 @default.
- W2969183492 hasAuthorship W2969183492A5081086000 @default.
- W2969183492 hasConcept C119857082 @default.
- W2969183492 hasConcept C121332964 @default.
- W2969183492 hasConcept C127413603 @default.
- W2969183492 hasConcept C134306372 @default.
- W2969183492 hasConcept C154945302 @default.
- W2969183492 hasConcept C168167062 @default.
- W2969183492 hasConcept C2524010 @default.
- W2969183492 hasConcept C2776799497 @default.
- W2969183492 hasConcept C28719098 @default.
- W2969183492 hasConcept C33923547 @default.
- W2969183492 hasConcept C36503486 @default.
- W2969183492 hasConcept C41008148 @default.
- W2969183492 hasConcept C66938386 @default.
- W2969183492 hasConcept C87210426 @default.
- W2969183492 hasConcept C97355855 @default.
- W2969183492 hasConceptScore W2969183492C119857082 @default.
- W2969183492 hasConceptScore W2969183492C121332964 @default.
- W2969183492 hasConceptScore W2969183492C127413603 @default.
- W2969183492 hasConceptScore W2969183492C134306372 @default.
- W2969183492 hasConceptScore W2969183492C154945302 @default.
- W2969183492 hasConceptScore W2969183492C168167062 @default.
- W2969183492 hasConceptScore W2969183492C2524010 @default.
- W2969183492 hasConceptScore W2969183492C2776799497 @default.
- W2969183492 hasConceptScore W2969183492C28719098 @default.
- W2969183492 hasConceptScore W2969183492C33923547 @default.
- W2969183492 hasConceptScore W2969183492C36503486 @default.
- W2969183492 hasConceptScore W2969183492C41008148 @default.
- W2969183492 hasConceptScore W2969183492C66938386 @default.
- W2969183492 hasConceptScore W2969183492C87210426 @default.
- W2969183492 hasConceptScore W2969183492C97355855 @default.
- W2969183492 hasFunder F4320338080 @default.
- W2969183492 hasLocation W29691834921 @default.
- W2969183492 hasOpenAccess W2969183492 @default.
- W2969183492 hasPrimaryLocation W29691834921 @default.
- W2969183492 hasRelatedWork W1555843758 @default.
- W2969183492 hasRelatedWork W2379533788 @default.
- W2969183492 hasRelatedWork W2961085424 @default.
- W2969183492 hasRelatedWork W3046775127 @default.
- W2969183492 hasRelatedWork W3170094116 @default.
- W2969183492 hasRelatedWork W4285260836 @default.
- W2969183492 hasRelatedWork W4286629047 @default.
- W2969183492 hasRelatedWork W4306321456 @default.
- W2969183492 hasRelatedWork W4306674287 @default.
- W2969183492 hasRelatedWork W4224009465 @default.
- W2969183492 hasVolume "218" @default.
- W2969183492 isParatext "false" @default.
- W2969183492 isRetracted "false" @default.
- W2969183492 magId "2969183492" @default.
- W2969183492 workType "article" @default.