Matches in SemOpenAlex for { <https://semopenalex.org/work/W2969215512> ?p ?o ?g. }
- W2969215512 abstract "ABSTRACT In this study, a deep neural network ( DNN ) is proposed to reduce the noise in task-based fMRI data without explicitly modeling noise. The DNN artificial neural network consists of one temporal convolutional layer, one long short-term memory (LSTM) layer, one time-distributed fully-connected layer, and one unconventional selection layer in sequential order. The LSTM layer takes not only the current time point but also what was perceived in a previous time point as its input to characterize the temporal autocorrelation of fMRI data. The fully-connected layer weights the output of the LSTM layer, and the output denoised fMRI time series is selected by the selection layer. Assuming that task-related neural response is limited to gray matter, the model parameters in the DNN network are optimized by maximizing the correlation difference between gray matter voxels and white matter or ventricular cerebrospinal fluid voxels. Instead of targeting a particular noise source, the proposed neural network takes advantage of the task design matrix to better extract task-related signal in fMRI data. The DNN network, along with other traditional denoising techniques, has been applied on simulated data, working memory task fMRI data acquired from a cohort of healthy subjects and episodic memory task fMRI data acquired from a small set of healthy elderly subjects. Qualitative and quantitative measurements were used to evaluate the performance of different denoising techniques. In the simulation, DNN improves fMRI activation detection and also adapts to varying hemodynamic response functions across different brain regions. DNN efficiently reduces physiological noise and generates more homogeneous task-response correlation maps in real data." @default.
- W2969215512 created "2019-08-29" @default.
- W2969215512 creator A5015684524 @default.
- W2969215512 creator A5024349319 @default.
- W2969215512 creator A5036585735 @default.
- W2969215512 creator A5051670753 @default.
- W2969215512 creator A5056541289 @default.
- W2969215512 creator A5088059993 @default.
- W2969215512 date "2019-08-24" @default.
- W2969215512 modified "2023-09-25" @default.
- W2969215512 title "A robust deep neural network for denoising task-based fMRI data: An application to working memory and episodic memory" @default.
- W2969215512 cites W1964625711 @default.
- W2969215512 cites W1972690852 @default.
- W2969215512 cites W1973776237 @default.
- W2969215512 cites W1978694642 @default.
- W2969215512 cites W1982850689 @default.
- W2969215512 cites W1983208069 @default.
- W2969215512 cites W1988557303 @default.
- W2969215512 cites W1990134753 @default.
- W2969215512 cites W1998940813 @default.
- W2969215512 cites W2005238835 @default.
- W2969215512 cites W2007318901 @default.
- W2969215512 cites W2020333990 @default.
- W2969215512 cites W2044423747 @default.
- W2969215512 cites W2045791628 @default.
- W2969215512 cites W2047453615 @default.
- W2969215512 cites W2049325056 @default.
- W2969215512 cites W2058046532 @default.
- W2969215512 cites W2064675550 @default.
- W2969215512 cites W2066313169 @default.
- W2969215512 cites W2068782491 @default.
- W2969215512 cites W2071300176 @default.
- W2969215512 cites W2071608556 @default.
- W2969215512 cites W2081718320 @default.
- W2969215512 cites W2082714165 @default.
- W2969215512 cites W2089572795 @default.
- W2969215512 cites W2091093127 @default.
- W2969215512 cites W2103040438 @default.
- W2969215512 cites W2107444050 @default.
- W2969215512 cites W2107878631 @default.
- W2969215512 cites W2108213395 @default.
- W2969215512 cites W2118366819 @default.
- W2969215512 cites W2130010412 @default.
- W2969215512 cites W2134718188 @default.
- W2969215512 cites W2137240152 @default.
- W2969215512 cites W2138092999 @default.
- W2969215512 cites W2143612262 @default.
- W2969215512 cites W2155188996 @default.
- W2969215512 cites W2157446241 @default.
- W2969215512 cites W2165306728 @default.
- W2969215512 cites W2169787465 @default.
- W2969215512 cites W2402268235 @default.
- W2969215512 cites W2556623269 @default.
- W2969215512 cites W2560079766 @default.
- W2969215512 cites W2566337002 @default.
- W2969215512 cites W2567460568 @default.
- W2969215512 cites W2759240783 @default.
- W2969215512 cites W2773671959 @default.
- W2969215512 cites W2791194758 @default.
- W2969215512 doi "https://doi.org/10.1101/746313" @default.
- W2969215512 hasPublicationYear "2019" @default.
- W2969215512 type Work @default.
- W2969215512 sameAs 2969215512 @default.
- W2969215512 citedByCount "0" @default.
- W2969215512 crossrefType "posted-content" @default.
- W2969215512 hasAuthorship W2969215512A5015684524 @default.
- W2969215512 hasAuthorship W2969215512A5024349319 @default.
- W2969215512 hasAuthorship W2969215512A5036585735 @default.
- W2969215512 hasAuthorship W2969215512A5051670753 @default.
- W2969215512 hasAuthorship W2969215512A5056541289 @default.
- W2969215512 hasAuthorship W2969215512A5088059993 @default.
- W2969215512 hasBestOaLocation W29692155121 @default.
- W2969215512 hasConcept C115961682 @default.
- W2969215512 hasConcept C153180895 @default.
- W2969215512 hasConcept C154945302 @default.
- W2969215512 hasConcept C163294075 @default.
- W2969215512 hasConcept C28490314 @default.
- W2969215512 hasConcept C41008148 @default.
- W2969215512 hasConcept C50644808 @default.
- W2969215512 hasConcept C54170458 @default.
- W2969215512 hasConcept C99498987 @default.
- W2969215512 hasConceptScore W2969215512C115961682 @default.
- W2969215512 hasConceptScore W2969215512C153180895 @default.
- W2969215512 hasConceptScore W2969215512C154945302 @default.
- W2969215512 hasConceptScore W2969215512C163294075 @default.
- W2969215512 hasConceptScore W2969215512C28490314 @default.
- W2969215512 hasConceptScore W2969215512C41008148 @default.
- W2969215512 hasConceptScore W2969215512C50644808 @default.
- W2969215512 hasConceptScore W2969215512C54170458 @default.
- W2969215512 hasConceptScore W2969215512C99498987 @default.
- W2969215512 hasLocation W29692155121 @default.
- W2969215512 hasLocation W29692155122 @default.
- W2969215512 hasOpenAccess W2969215512 @default.
- W2969215512 hasPrimaryLocation W29692155121 @default.
- W2969215512 hasRelatedWork W17658120 @default.
- W2969215512 hasRelatedWork W1997409997 @default.
- W2969215512 hasRelatedWork W2506839541 @default.
- W2969215512 hasRelatedWork W2781830772 @default.
- W2969215512 hasRelatedWork W2786407077 @default.
- W2969215512 hasRelatedWork W2792437735 @default.