Matches in SemOpenAlex for { <https://semopenalex.org/work/W2969232882> ?p ?o ?g. }
- W2969232882 endingPage "5248" @default.
- W2969232882 startingPage "5238" @default.
- W2969232882 abstract "Purpose Micrometer spatial resolution dosimetry has become inevitable for advanced radiotherapy techniques. A new approach using radiochromic films was developed to measure a radiation dose at a micrometer spatial resolution by confocal Raman spectroscopy. Methods The commercial radiochromic films (RCF), EBT3 and EBT‐XD, were irradiated with known doses using 50, 100, 200, and 300 kVp, and 6‐MV x rays. The dose levels ranged from 0.3 to 50 Gy. The Raman mapping technique developed in our early study was used to readout an area of 100 × 100 µm 2 on RCF with improved lateral and depth resolutions with confocal Raman spectrometry. The variation in Raman spectra of C‐C‐C deformation and C≡C stretching modes of diacetylene polymers around 676 and 2060 cm −1 , respectively, as a function of therapeutic x‐ray doses, was measured. The single peak (SP) of C≡C and the peak ratio (PR) of C≡C band height to C‐C‐C band height with a spatial resolution of 10 µm on both types of RCF were evaluated, averaged, and plotted as a function of dose. An achievable spatial resolution, clinically useful dose range, dosimetric sensitivity, dose uniformity, and postirradiation stability as well as the orientation, energy, and dose rate dependence, of both types of RCFs, were characterized by the technique developed in this study. Results A spatial resolution on RCF achieved by SP and PR methods was ~4.5 and ~2.9 µm, respectively. Raman spectroscopy data showed dose nonuniformity of ~11% in SP method and <3% in PR method. The SP method provided dose ranges of up to ~10 and ~20 Gy for EBT3 and EBT‐XD films, respectively while the PR method up to ~30 and ~50 Gy. The PR method diminished the orientation effect. The percent difference between landscape and portrait orientations for the EBT3 and the EBT‐XD films at 4 Gy had an acceptable level of 1.2% and 2.4%, respectively. With both SP and PR methods, the EBT3 and the EBT‐XD films showed weak energy (within ~10% and ~3% for SP and PR methods, respectively) and dose rate dependence (within ~5% and ~3% for SP and PR methods, respectively) and had a stable response after 24‐h postirradiation. Conclusions A technique for micrometer‐resolution dosimetry was successfully developed by detecting radiation‐induced Raman shift on EBT3 and EBT‐XD. Both types of RCFs were suitable for micrometer‐resolution dosimetry using CRS. With CRS both lateral and depth resolutions on RCF were improved. The PR method provided superior characteristics in dose uniformity, dose ranges, orientation dependence, and laser effect for both types of RCFs. The overall dosimetric characteristics of the RCFs determined by this technique were similar to those known by optical density scanning. The CRS with the PR method is advantageous over other the traditional scanning systems as a spatial resolution of <10 µm on RCF can be achieved with less deviations." @default.
- W2969232882 created "2019-08-29" @default.
- W2969232882 creator A5013356812 @default.
- W2969232882 creator A5015368909 @default.
- W2969232882 creator A5019110391 @default.
- W2969232882 creator A5026524189 @default.
- W2969232882 creator A5044433369 @default.
- W2969232882 creator A5085614043 @default.
- W2969232882 date "2019-09-13" @default.
- W2969232882 modified "2023-10-01" @default.
- W2969232882 title "Characterization of radiochromic films as a micrometer‐resolution dosimeter by confocal Raman spectroscopy" @default.
- W2969232882 cites W140360645 @default.
- W2969232882 cites W1591656435 @default.
- W2969232882 cites W1882654212 @default.
- W2969232882 cites W1958869358 @default.
- W2969232882 cites W1964821591 @default.
- W2969232882 cites W1966234893 @default.
- W2969232882 cites W1966383768 @default.
- W2969232882 cites W1975529510 @default.
- W2969232882 cites W2004804511 @default.
- W2969232882 cites W2016755314 @default.
- W2969232882 cites W2039130779 @default.
- W2969232882 cites W2043513715 @default.
- W2969232882 cites W2045627293 @default.
- W2969232882 cites W2072468250 @default.
- W2969232882 cites W2073548263 @default.
- W2969232882 cites W2075459457 @default.
- W2969232882 cites W2091198470 @default.
- W2969232882 cites W2092652823 @default.
- W2969232882 cites W2114014164 @default.
- W2969232882 cites W2159561330 @default.
- W2969232882 cites W2161431291 @default.
- W2969232882 cites W2161477718 @default.
- W2969232882 cites W2165767756 @default.
- W2969232882 cites W2171675528 @default.
- W2969232882 cites W2192214088 @default.
- W2969232882 cites W2233982972 @default.
- W2969232882 cites W2255479147 @default.
- W2969232882 cites W2460061825 @default.
- W2969232882 cites W2482772788 @default.
- W2969232882 cites W2499236741 @default.
- W2969232882 cites W2537499163 @default.
- W2969232882 cites W2554367802 @default.
- W2969232882 cites W2597393260 @default.
- W2969232882 cites W2770759528 @default.
- W2969232882 cites W2903757412 @default.
- W2969232882 cites W2911712629 @default.
- W2969232882 cites W3021970156 @default.
- W2969232882 doi "https://doi.org/10.1002/mp.13778" @default.
- W2969232882 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31442302" @default.
- W2969232882 hasPublicationYear "2019" @default.
- W2969232882 type Work @default.
- W2969232882 sameAs 2969232882 @default.
- W2969232882 citedByCount "5" @default.
- W2969232882 countsByYear W29692328822021 @default.
- W2969232882 countsByYear W29692328822023 @default.
- W2969232882 crossrefType "journal-article" @default.
- W2969232882 hasAuthorship W2969232882A5013356812 @default.
- W2969232882 hasAuthorship W2969232882A5015368909 @default.
- W2969232882 hasAuthorship W2969232882A5019110391 @default.
- W2969232882 hasAuthorship W2969232882A5026524189 @default.
- W2969232882 hasAuthorship W2969232882A5044433369 @default.
- W2969232882 hasAuthorship W2969232882A5085614043 @default.
- W2969232882 hasConcept C105636585 @default.
- W2969232882 hasConcept C111337013 @default.
- W2969232882 hasConcept C113196181 @default.
- W2969232882 hasConcept C120665830 @default.
- W2969232882 hasConcept C121332964 @default.
- W2969232882 hasConcept C136009344 @default.
- W2969232882 hasConcept C138268822 @default.
- W2969232882 hasConcept C153385146 @default.
- W2969232882 hasConcept C154945302 @default.
- W2969232882 hasConcept C171635847 @default.
- W2969232882 hasConcept C185544564 @default.
- W2969232882 hasConcept C185592680 @default.
- W2969232882 hasConcept C192562407 @default.
- W2969232882 hasConcept C205372480 @default.
- W2969232882 hasConcept C2989005 @default.
- W2969232882 hasConcept C32891209 @default.
- W2969232882 hasConcept C40003534 @default.
- W2969232882 hasConcept C41008148 @default.
- W2969232882 hasConcept C43617362 @default.
- W2969232882 hasConcept C62520636 @default.
- W2969232882 hasConcept C71924100 @default.
- W2969232882 hasConcept C75088862 @default.
- W2969232882 hasConceptScore W2969232882C105636585 @default.
- W2969232882 hasConceptScore W2969232882C111337013 @default.
- W2969232882 hasConceptScore W2969232882C113196181 @default.
- W2969232882 hasConceptScore W2969232882C120665830 @default.
- W2969232882 hasConceptScore W2969232882C121332964 @default.
- W2969232882 hasConceptScore W2969232882C136009344 @default.
- W2969232882 hasConceptScore W2969232882C138268822 @default.
- W2969232882 hasConceptScore W2969232882C153385146 @default.
- W2969232882 hasConceptScore W2969232882C154945302 @default.
- W2969232882 hasConceptScore W2969232882C171635847 @default.
- W2969232882 hasConceptScore W2969232882C185544564 @default.
- W2969232882 hasConceptScore W2969232882C185592680 @default.
- W2969232882 hasConceptScore W2969232882C192562407 @default.