Matches in SemOpenAlex for { <https://semopenalex.org/work/W2969250058> ?p ?o ?g. }
- W2969250058 endingPage "2777" @default.
- W2969250058 startingPage "2761" @default.
- W2969250058 abstract "The model reactions CH 3 X + (NH—CH=O)M ➔ CH 3 —NH—NH═O or NH═CH—O—CH 3 + MX (M = none, Li, Na, K, Ag, Cu; X = F, Cl, Br) are investigated to demonstrate the feasibility of Marcus theory and the hard and soft acids and bases (HSAB) principle in predicting the reactivity of ambident nucleophiles. The delocalization indices (DI) are defined in the framework of the quantum theory of atoms in molecules (QT‐AIM), and are used as the scale of softness in the HSAB principle. To react with the ambident nucleophile NH═CH—O − , the carbocation H 3 C + from CH 3 X (F, Cl, Br) is actually a borderline acid according to the DI values of the forming C…N and C…O bonds in the transition states (between 0.25 and 0.49), while the counter ions are divided into three groups according to the DI values of weak interactions involving M (M…X, M…N, and M…O): group I (M = none, and Me 4 N) basically show zero DI values; group II species (M = Li, Na, and K) have noticeable DI values but the magnitudes are usually less than 0.15; and group III species (M = Ag and Cu(I)) have significant DI values (0.30–0.61). On a relative basis, H 3 C + is a soft acid with respect to group I and group II counter ions, and a hard acid with respect to group III counter ions. Therefore, N‐regioselectivity is found in the presence of group I and group II counter ions (M = Me 4 N, Li, Na, K), while O‐regioselectivity is observed in the presence of the group III counter ions (M = Ag, and Cu(I)). The hardness of atoms, groups, and molecules is also calculated with new functions that depend on ionization potential ( I ) and electron affinity ( A ) and use the atomic charges obtained from localization indices (LI), so that the regioselectivity is explained by the atomic hardness of reactive nitrogen atoms in the transition states according to the maximum hardness principle (MHP). The exact Marcus equation is derived from the simple harmonic potential energy parabola, so that the concepts of activation free energy, intrinsic activation barrier, and reaction energy are completely connected. The required intrinsic activation barriers can be either estimated from ab initio calculations on reactant, transition state, and product of the model reactions, or calculated from identity reactions. The counter ions stabilize the reactant through bridging N‐ and O‐site of reactant of identity reactions, so that the intrinsic barriers for the salts are higher than those for free ambident anions, which is explained by the increased reorganization parameter Δ r . The proper application of Marcus theory should quantitatively consider all three terms of Marcus equation, and reliably represent the results with potential energy parabolas for reactants and all products. For the model reactions, both Marcus theory and HSAB principle/MHP principle predict the N‐regioselectivity when M = none, Me 4 N, Li, Na, K, and the O‐regioselectivity when M = Ag and Cu(I). © 2019 Wiley Periodicals, Inc." @default.
- W2969250058 created "2019-08-29" @default.
- W2969250058 creator A5004949574 @default.
- W2969250058 creator A5057174648 @default.
- W2969250058 creator A5071017472 @default.
- W2969250058 creator A5078915866 @default.
- W2969250058 date "2019-08-19" @default.
- W2969250058 modified "2023-10-16" @default.
- W2969250058 title "The Reactivity of Ambident Nucleophiles: Marcus Theory or Hard and Soft Acids and Bases Principle?" @default.
- W2969250058 cites W1967458949 @default.
- W2969250058 cites W1974741171 @default.
- W2969250058 cites W1975181457 @default.
- W2969250058 cites W1977386496 @default.
- W2969250058 cites W1977664238 @default.
- W2969250058 cites W1981448282 @default.
- W2969250058 cites W1981772893 @default.
- W2969250058 cites W1992909696 @default.
- W2969250058 cites W1999574040 @default.
- W2969250058 cites W2005877813 @default.
- W2969250058 cites W2006656611 @default.
- W2969250058 cites W2007395042 @default.
- W2969250058 cites W2008708918 @default.
- W2969250058 cites W2009533449 @default.
- W2969250058 cites W2010258545 @default.
- W2969250058 cites W2010439160 @default.
- W2969250058 cites W2011299057 @default.
- W2969250058 cites W2011984173 @default.
- W2969250058 cites W2015473274 @default.
- W2969250058 cites W2020431589 @default.
- W2969250058 cites W2027800483 @default.
- W2969250058 cites W2031267750 @default.
- W2969250058 cites W2033772593 @default.
- W2969250058 cites W2036503595 @default.
- W2969250058 cites W2036524141 @default.
- W2969250058 cites W2036594823 @default.
- W2969250058 cites W2041518490 @default.
- W2969250058 cites W2043701535 @default.
- W2969250058 cites W2059274029 @default.
- W2969250058 cites W2060955206 @default.
- W2969250058 cites W2066818458 @default.
- W2969250058 cites W2067477324 @default.
- W2969250058 cites W2067641275 @default.
- W2969250058 cites W2073456063 @default.
- W2969250058 cites W2078377134 @default.
- W2969250058 cites W2079050656 @default.
- W2969250058 cites W2083222334 @default.
- W2969250058 cites W2084256105 @default.
- W2969250058 cites W2086935005 @default.
- W2969250058 cites W2088510747 @default.
- W2969250058 cites W2090323663 @default.
- W2969250058 cites W2091237955 @default.
- W2969250058 cites W2091692227 @default.
- W2969250058 cites W2094745938 @default.
- W2969250058 cites W2125093214 @default.
- W2969250058 cites W2146300023 @default.
- W2969250058 cites W2146317650 @default.
- W2969250058 cites W2313831394 @default.
- W2969250058 cites W2320201800 @default.
- W2969250058 cites W2321399812 @default.
- W2969250058 cites W2335399760 @default.
- W2969250058 cites W2497005299 @default.
- W2969250058 cites W2765707653 @default.
- W2969250058 cites W2785360107 @default.
- W2969250058 cites W2802311095 @default.
- W2969250058 cites W4243011070 @default.
- W2969250058 doi "https://doi.org/10.1002/jcc.26052" @default.
- W2969250058 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31429098" @default.
- W2969250058 hasPublicationYear "2019" @default.
- W2969250058 type Work @default.
- W2969250058 sameAs 2969250058 @default.
- W2969250058 citedByCount "11" @default.
- W2969250058 countsByYear W29692500582020 @default.
- W2969250058 countsByYear W29692500582021 @default.
- W2969250058 countsByYear W29692500582022 @default.
- W2969250058 countsByYear W29692500582023 @default.
- W2969250058 crossrefType "journal-article" @default.
- W2969250058 hasAuthorship W2969250058A5004949574 @default.
- W2969250058 hasAuthorship W2969250058A5057174648 @default.
- W2969250058 hasAuthorship W2969250058A5071017472 @default.
- W2969250058 hasAuthorship W2969250058A5078915866 @default.
- W2969250058 hasConcept C109057382 @default.
- W2969250058 hasConcept C121332964 @default.
- W2969250058 hasConcept C130188946 @default.
- W2969250058 hasConcept C142724271 @default.
- W2969250058 hasConcept C145148216 @default.
- W2969250058 hasConcept C147597530 @default.
- W2969250058 hasConcept C148898269 @default.
- W2969250058 hasConcept C152365726 @default.
- W2969250058 hasConcept C155647269 @default.
- W2969250058 hasConcept C161790260 @default.
- W2969250058 hasConcept C178790620 @default.
- W2969250058 hasConcept C178907741 @default.
- W2969250058 hasConcept C185592680 @default.
- W2969250058 hasConcept C204787440 @default.
- W2969250058 hasConcept C2776910235 @default.
- W2969250058 hasConcept C2781311116 @default.
- W2969250058 hasConcept C32909587 @default.
- W2969250058 hasConcept C47548479 @default.