Matches in SemOpenAlex for { <https://semopenalex.org/work/W2969251134> ?p ?o ?g. }
- W2969251134 endingPage "9601" @default.
- W2969251134 startingPage "9589" @default.
- W2969251134 abstract "The multispectral instrument (MSI) carried by Sentinel-2A has 13 spectral bands with various spatial resolutions (i.e., four 10-m, six 20-m, and three 60-m bands). A wide range of applications requires a 10-m resolution for all spectral bands, including the 20- and 60-m bands. To achieve this requirement, previous studies used conventional pansharpening techniques, which require a simulated 10-m panchromatic (PAN) band from four 10-m bands [blue, green, red, and near infrared (NIR)]. The simulated PAN band may not have all the information from the original four bands and may have no spectral response function that overlaps the 20- or 60-m bands to be sharpened, which may degrade fusion quality. This paper presents a machine learning method that can directly use the information from multiple 10-m resolution bands for fusion. The method first learns the spectral relationship between the 20- or 60-m band to be sharpened and the selected 10-m bands degraded to 20 or 60 m using the support vector regression (SVR) model. The model is then applied to the selected 10-m bands to predict the 10-m-resolution version of the 20- or 60-m band. The image degradation process was tuned to closely match the Sentinel-2A MSI modulation transfer function (MTF). We applied our method to three data sets in Guangzhou, China, New South Wales, Australia, and St. Louis, USA, and achieved better fusion results than other commonly used pansharpening methods in terms of both visual and quantitative factors." @default.
- W2969251134 created "2019-08-29" @default.
- W2969251134 creator A5051744341 @default.
- W2969251134 creator A5059186978 @default.
- W2969251134 creator A5059795059 @default.
- W2969251134 creator A5081486308 @default.
- W2969251134 date "2019-12-01" @default.
- W2969251134 modified "2023-10-15" @default.
- W2969251134 title "Sentinel-2A Image Fusion Using a Machine Learning Approach" @default.
- W2969251134 cites W1495168473 @default.
- W2969251134 cites W1596717185 @default.
- W2969251134 cites W1980110630 @default.
- W2969251134 cites W1983407123 @default.
- W2969251134 cites W1996123117 @default.
- W2969251134 cites W2014711179 @default.
- W2969251134 cites W2021407139 @default.
- W2969251134 cites W2056435747 @default.
- W2969251134 cites W2064366277 @default.
- W2969251134 cites W2069281949 @default.
- W2969251134 cites W2100329651 @default.
- W2969251134 cites W2100604996 @default.
- W2969251134 cites W2103504761 @default.
- W2969251134 cites W2104128541 @default.
- W2969251134 cites W2106891293 @default.
- W2969251134 cites W2109526535 @default.
- W2969251134 cites W2111422864 @default.
- W2969251134 cites W2117853853 @default.
- W2969251134 cites W2123046940 @default.
- W2969251134 cites W2124743705 @default.
- W2969251134 cites W2132984323 @default.
- W2969251134 cites W2133251749 @default.
- W2969251134 cites W2139529730 @default.
- W2969251134 cites W2142843085 @default.
- W2969251134 cites W2144436897 @default.
- W2969251134 cites W2152254169 @default.
- W2969251134 cites W2156909104 @default.
- W2969251134 cites W2159269332 @default.
- W2969251134 cites W2163334907 @default.
- W2969251134 cites W2171108951 @default.
- W2969251134 cites W2172185514 @default.
- W2969251134 cites W2336807904 @default.
- W2969251134 cites W2536760076 @default.
- W2969251134 cites W2560449954 @default.
- W2969251134 cites W2739419885 @default.
- W2969251134 cites W2751786729 @default.
- W2969251134 cites W2765674230 @default.
- W2969251134 cites W2765749804 @default.
- W2969251134 cites W2767886251 @default.
- W2969251134 cites W2799417842 @default.
- W2969251134 cites W2897285410 @default.
- W2969251134 cites W4239510810 @default.
- W2969251134 doi "https://doi.org/10.1109/tgrs.2019.2927766" @default.
- W2969251134 hasPublicationYear "2019" @default.
- W2969251134 type Work @default.
- W2969251134 sameAs 2969251134 @default.
- W2969251134 citedByCount "15" @default.
- W2969251134 countsByYear W29692511342020 @default.
- W2969251134 countsByYear W29692511342021 @default.
- W2969251134 countsByYear W29692511342022 @default.
- W2969251134 countsByYear W29692511342023 @default.
- W2969251134 crossrefType "journal-article" @default.
- W2969251134 hasAuthorship W2969251134A5051744341 @default.
- W2969251134 hasAuthorship W2969251134A5059186978 @default.
- W2969251134 hasAuthorship W2969251134A5059795059 @default.
- W2969251134 hasAuthorship W2969251134A5081486308 @default.
- W2969251134 hasConcept C107445234 @default.
- W2969251134 hasConcept C114700698 @default.
- W2969251134 hasConcept C115961682 @default.
- W2969251134 hasConcept C120665830 @default.
- W2969251134 hasConcept C121332964 @default.
- W2969251134 hasConcept C12267149 @default.
- W2969251134 hasConcept C124967146 @default.
- W2969251134 hasConcept C1276947 @default.
- W2969251134 hasConcept C138885662 @default.
- W2969251134 hasConcept C153180895 @default.
- W2969251134 hasConcept C154945302 @default.
- W2969251134 hasConcept C158525013 @default.
- W2969251134 hasConcept C173163844 @default.
- W2969251134 hasConcept C175231954 @default.
- W2969251134 hasConcept C205372480 @default.
- W2969251134 hasConcept C205649164 @default.
- W2969251134 hasConcept C41008148 @default.
- W2969251134 hasConcept C41895202 @default.
- W2969251134 hasConcept C4839761 @default.
- W2969251134 hasConcept C62649853 @default.
- W2969251134 hasConcept C69744172 @default.
- W2969251134 hasConceptScore W2969251134C107445234 @default.
- W2969251134 hasConceptScore W2969251134C114700698 @default.
- W2969251134 hasConceptScore W2969251134C115961682 @default.
- W2969251134 hasConceptScore W2969251134C120665830 @default.
- W2969251134 hasConceptScore W2969251134C121332964 @default.
- W2969251134 hasConceptScore W2969251134C12267149 @default.
- W2969251134 hasConceptScore W2969251134C124967146 @default.
- W2969251134 hasConceptScore W2969251134C1276947 @default.
- W2969251134 hasConceptScore W2969251134C138885662 @default.
- W2969251134 hasConceptScore W2969251134C153180895 @default.
- W2969251134 hasConceptScore W2969251134C154945302 @default.
- W2969251134 hasConceptScore W2969251134C158525013 @default.