Matches in SemOpenAlex for { <https://semopenalex.org/work/W2969251945> ?p ?o ?g. }
- W2969251945 endingPage "108242" @default.
- W2969251945 startingPage "108242" @default.
- W2969251945 abstract "One way to interject knowledge into clinically impactful forecasting is to use data assimilation, a nonlinear regression that projects data onto a mechanistic physiologic model, instead of a set of functions, such as neural networks. Such regressions have an advantage of being useful with particularly sparse, non-stationary clinical data. However, physiological models are often nonlinear and can have many parameters, leading to potential problems with parameter identifiability, or the ability to find a unique set of parameters that minimize forecasting error. The identifiability problems can be minimized or eliminated by reducing the number of parameters estimated, but reducing the number of estimated parameters also reduces the flexibility of the model and hence increases forecasting error. We propose a method, the parameter Houlihan, that combines traditional machine learning techniques with data assimilation, to select the right set of model parameters to minimize forecasting error while reducing identifiability problems. The method worked well: the data assimilation-based glucose forecasts and estimates for our cohort using the Houlihan-selected parameter sets generally also minimize forecasting errors compared to other parameter selection methods such as by-hand parameter selection. Nevertheless, the forecast with the lowest forecast error does not always accurately represent physiology, but further advancements of the algorithm provide a path for improving physiologic fidelity as well. Our hope is that this methodology represents a first step toward combining machine learning with data assimilation and provides a lower-threshold entry point for using data assimilation with clinical data by helping select the right parameters to estimate." @default.
- W2969251945 created "2019-08-29" @default.
- W2969251945 creator A5015187091 @default.
- W2969251945 creator A5042719367 @default.
- W2969251945 creator A5053670656 @default.
- W2969251945 creator A5070746797 @default.
- W2969251945 date "2019-10-01" @default.
- W2969251945 modified "2023-10-15" @default.
- W2969251945 title "The parameter Houlihan: A solution to high-throughput identifiability indeterminacy for brutally ill-posed problems" @default.
- W2969251945 cites W1844237527 @default.
- W2969251945 cites W1902526473 @default.
- W2969251945 cites W1963705355 @default.
- W2969251945 cites W196973002 @default.
- W2969251945 cites W1970473426 @default.
- W2969251945 cites W1972586138 @default.
- W2969251945 cites W1973825638 @default.
- W2969251945 cites W1981964073 @default.
- W2969251945 cites W1982009363 @default.
- W2969251945 cites W1984812560 @default.
- W2969251945 cites W1991238279 @default.
- W2969251945 cites W1993512681 @default.
- W2969251945 cites W2002510399 @default.
- W2969251945 cites W2004052104 @default.
- W2969251945 cites W2004575876 @default.
- W2969251945 cites W2008082177 @default.
- W2969251945 cites W2024250320 @default.
- W2969251945 cites W2027197837 @default.
- W2969251945 cites W2033783472 @default.
- W2969251945 cites W2035636354 @default.
- W2969251945 cites W2044474419 @default.
- W2969251945 cites W2045218416 @default.
- W2969251945 cites W2046199531 @default.
- W2969251945 cites W2051784711 @default.
- W2969251945 cites W2056542068 @default.
- W2969251945 cites W2059611538 @default.
- W2969251945 cites W206326520 @default.
- W2969251945 cites W2068270626 @default.
- W2969251945 cites W2079569240 @default.
- W2969251945 cites W2094631910 @default.
- W2969251945 cites W2096726205 @default.
- W2969251945 cites W2097800192 @default.
- W2969251945 cites W2113105229 @default.
- W2969251945 cites W2119033610 @default.
- W2969251945 cites W2121382432 @default.
- W2969251945 cites W2122825543 @default.
- W2969251945 cites W2123454682 @default.
- W2969251945 cites W2123487311 @default.
- W2969251945 cites W2124822779 @default.
- W2969251945 cites W2124896801 @default.
- W2969251945 cites W2132386227 @default.
- W2969251945 cites W2137983211 @default.
- W2969251945 cites W2140172493 @default.
- W2969251945 cites W2146907631 @default.
- W2969251945 cites W2148654972 @default.
- W2969251945 cites W2148839848 @default.
- W2969251945 cites W2149498546 @default.
- W2969251945 cites W2151068025 @default.
- W2969251945 cites W2152657433 @default.
- W2969251945 cites W2152726215 @default.
- W2969251945 cites W2158840489 @default.
- W2969251945 cites W2161885246 @default.
- W2969251945 cites W2162073557 @default.
- W2969251945 cites W2162630875 @default.
- W2969251945 cites W2167160009 @default.
- W2969251945 cites W2171613573 @default.
- W2969251945 cites W2259159835 @default.
- W2969251945 cites W2299025998 @default.
- W2969251945 cites W2332531077 @default.
- W2969251945 cites W2337688125 @default.
- W2969251945 cites W2490915100 @default.
- W2969251945 cites W2518939151 @default.
- W2969251945 cites W259909490 @default.
- W2969251945 cites W2600023023 @default.
- W2969251945 cites W2608902687 @default.
- W2969251945 cites W2762181533 @default.
- W2969251945 cites W2896190255 @default.
- W2969251945 cites W2963940811 @default.
- W2969251945 cites W3098949126 @default.
- W2969251945 cites W4238943743 @default.
- W2969251945 cites W4250293939 @default.
- W2969251945 cites W4255454912 @default.
- W2969251945 cites W4293079168 @default.
- W2969251945 doi "https://doi.org/10.1016/j.mbs.2019.108242" @default.
- W2969251945 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6759390" @default.
- W2969251945 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31454628" @default.
- W2969251945 hasPublicationYear "2019" @default.
- W2969251945 type Work @default.
- W2969251945 sameAs 2969251945 @default.
- W2969251945 citedByCount "10" @default.
- W2969251945 countsByYear W29692519452018 @default.
- W2969251945 countsByYear W29692519452020 @default.
- W2969251945 countsByYear W29692519452021 @default.
- W2969251945 countsByYear W29692519452022 @default.
- W2969251945 countsByYear W29692519452023 @default.
- W2969251945 crossrefType "journal-article" @default.
- W2969251945 hasAuthorship W2969251945A5015187091 @default.
- W2969251945 hasAuthorship W2969251945A5042719367 @default.
- W2969251945 hasAuthorship W2969251945A5053670656 @default.