Matches in SemOpenAlex for { <https://semopenalex.org/work/W2969256494> ?p ?o ?g. }
- W2969256494 abstract "This thesis presents developments in fluorescence techniques that allow for the study of Fluorescence Resonance Energy Transfer between multiple chromophores in single molecules in solution. Multi-parameter Fluorescence Detection (MFD) is a single-molecule technique in which several fluorescence parameters are recorded simultaneously. In this work MFD is combined to other techniques, Fluorescence Correlation Spectroscopy and Probability Distribution Analysis, to enhance their capabilities: -For FCS it is introduced a method to obtain the separate the correlation contributions of the different species in a multi-component system. -For PDA correction for multi-molecular events and brightness heterogeneities are proposed. Moreover a mathematical model for the dynamic interconversion of a two state system is implemented. The possibility to observe and characterize multiple-step FRET in single molecules was tested by investigating double stranded DNA labeled with three fluorophores, one donor (D) and two acceptors (A1 and A2). The sequence was designed so that the single FRET steps take place between D and A1 and between A1 and A2, even though D-A2 transfer was also observed. Fluorescence signal from each dye was detected, and good separation was achieved. These results suggested that, already as qualitative assay, it is possible to label multi-domain or multi-molecular systems and have information about proximity or simultaneous presence of the labeled positions. Exploiting the MFD capabilities donor quenching and A2 heterogeneity were detected. Quantitative analysis of the system was precluded due to the complex photophysics of A2. The interconversion between the stacking conformers, A/B and A/D, of a Holiday junction was studied as a function of Mg2+ concentration. At least 3 equilibria, taking place at different timescales, were individuated. The equilibria were associated to the transitions between the conformer A/B and its Mg-bound form, A/B and A/D and A/D and its Mg-bound form. Comparison between different Holliday junctions suggested that the timescales of the different equilibria are sequence independent and only the interconversion equilibrium between A/B and A/D is characteristic of each junction. The open cruciform structure was not observed, even in the absence of Mg2+ where it is supposed to be the only populated conformer. These results led to a revision of the commonly accepted interconversion model. In the model proposed in this work it is hypothesized that in absence of metal ions the Holliday junction is oscillating between the two folded conformers and only when Mg2+ is coordinated the junction is fixed in the conformation it is at the moment. The disassembly of mononucleosomes was studied by quantitative single-molecule FRET with high spatial resolution. Reversible dissociation was induced by increasing NaCl concentration. At least three species with different FRET efficiencies were identified: a high-FRET species corresponding to the intact nucleosome, a mid-FRET species that was attributed to a first intermediate with a partially unwrapped DNA, and a low-FRET species characterized by a very broad FRET distribution, representing a highly unwrapped structure. FCS analysis indicated that even in the low-FRET state, some histones are still bound to the DNA. The interdye distance of 54.0 A measured for the high-FRET species is consistent with the known crystallographic structure. A geometric model of the nucleosome disassembly predicts exactly the presence of the observed FRET species and confirms their assignment to two populations in the unwrapping pathway." @default.
- W2969256494 created "2019-08-29" @default.
- W2969256494 creator A5026655832 @default.
- W2969256494 date "2010-01-01" @default.
- W2969256494 modified "2023-09-27" @default.
- W2969256494 title "Fluorescence resonance energy transfer between multiple chromophores studied by single-molecule spectroscopy" @default.
- W2969256494 cites W1964790454 @default.
- W2969256494 cites W1967428319 @default.
- W2969256494 cites W1969073916 @default.
- W2969256494 cites W1970638451 @default.
- W2969256494 cites W1977420895 @default.
- W2969256494 cites W1979103466 @default.
- W2969256494 cites W1981104867 @default.
- W2969256494 cites W1981765336 @default.
- W2969256494 cites W1983159345 @default.
- W2969256494 cites W1984748886 @default.
- W2969256494 cites W1985991521 @default.
- W2969256494 cites W1987125442 @default.
- W2969256494 cites W1987682801 @default.
- W2969256494 cites W1991175357 @default.
- W2969256494 cites W1991411602 @default.
- W2969256494 cites W1992777360 @default.
- W2969256494 cites W1996762013 @default.
- W2969256494 cites W1998030898 @default.
- W2969256494 cites W2000057317 @default.
- W2969256494 cites W2002376004 @default.
- W2969256494 cites W2003871339 @default.
- W2969256494 cites W2006506298 @default.
- W2969256494 cites W2007318191 @default.
- W2969256494 cites W2008096642 @default.
- W2969256494 cites W2008796603 @default.
- W2969256494 cites W2009702999 @default.
- W2969256494 cites W2013571070 @default.
- W2969256494 cites W2016464725 @default.
- W2969256494 cites W2016987115 @default.
- W2969256494 cites W2020884463 @default.
- W2969256494 cites W2025970642 @default.
- W2969256494 cites W2038406540 @default.
- W2969256494 cites W2038645974 @default.
- W2969256494 cites W2041052729 @default.
- W2969256494 cites W2041505869 @default.
- W2969256494 cites W2043629794 @default.
- W2969256494 cites W2045972663 @default.
- W2969256494 cites W2047286210 @default.
- W2969256494 cites W2048350558 @default.
- W2969256494 cites W2050538415 @default.
- W2969256494 cites W2051242057 @default.
- W2969256494 cites W2051555014 @default.
- W2969256494 cites W2052842503 @default.
- W2969256494 cites W2052904236 @default.
- W2969256494 cites W2054871735 @default.
- W2969256494 cites W2060357264 @default.
- W2969256494 cites W2063107779 @default.
- W2969256494 cites W2065367918 @default.
- W2969256494 cites W2068301995 @default.
- W2969256494 cites W2070061241 @default.
- W2969256494 cites W2073271190 @default.
- W2969256494 cites W2073603397 @default.
- W2969256494 cites W2077830471 @default.
- W2969256494 cites W2079009915 @default.
- W2969256494 cites W2079329396 @default.
- W2969256494 cites W2087929865 @default.
- W2969256494 cites W2094075548 @default.
- W2969256494 cites W2100390617 @default.
- W2969256494 cites W2102123683 @default.
- W2969256494 cites W2103936261 @default.
- W2969256494 cites W2104437632 @default.
- W2969256494 cites W2105996049 @default.
- W2969256494 cites W2109868128 @default.
- W2969256494 cites W2112714012 @default.
- W2969256494 cites W2115032859 @default.
- W2969256494 cites W2116382310 @default.
- W2969256494 cites W2120218062 @default.
- W2969256494 cites W2123014757 @default.
- W2969256494 cites W2123099266 @default.
- W2969256494 cites W2128978059 @default.
- W2969256494 cites W2129995310 @default.
- W2969256494 cites W2132677630 @default.
- W2969256494 cites W2143654826 @default.
- W2969256494 cites W2144792857 @default.
- W2969256494 cites W2146716725 @default.
- W2969256494 cites W2147745998 @default.
- W2969256494 cites W2151553287 @default.
- W2969256494 cites W2152406248 @default.
- W2969256494 cites W2154892443 @default.
- W2969256494 cites W2157222407 @default.
- W2969256494 cites W2160393299 @default.
- W2969256494 cites W2164771212 @default.
- W2969256494 cites W2165037136 @default.
- W2969256494 cites W2165371679 @default.
- W2969256494 cites W2568743474 @default.
- W2969256494 cites W3021510377 @default.
- W2969256494 cites W3142567747 @default.
- W2969256494 hasPublicationYear "2010" @default.
- W2969256494 type Work @default.
- W2969256494 sameAs 2969256494 @default.
- W2969256494 citedByCount "0" @default.
- W2969256494 crossrefType "dissertation" @default.
- W2969256494 hasAuthorship W2969256494A5026655832 @default.
- W2969256494 hasConcept C113196181 @default.