Matches in SemOpenAlex for { <https://semopenalex.org/work/W2969350434> ?p ?o ?g. }
- W2969350434 endingPage "84" @default.
- W2969350434 startingPage "67" @default.
- W2969350434 abstract "In Mohammadi et al. (Evolutionary computation, optimization and learning algorithms for data science. arXiv preprint, arXiv: 1908.08006, 2019), we have explored the theoretical aspects of feature selection and evolutionary algorithms. In this chapter, we focus on optimization algorithms for enhancing data analytic process, i.e., we propose to explore applications of nature-inspired algorithms in data science. Feature selection optimization is a hybrid approach leveraging feature selection techniques and evolutionary algorithms process to optimize the selected features. Prior works solve this problem iteratively to converge to an optimal feature subset. Feature selection optimization is a non-specific domain approach. Data scientists mainly attempt to find an advanced way to analyse data n with high computational efficiency and low time complexity, leading to efficient data analytics. Thus, by increasing generated/measured/sensed data from various sources, analysis, manipulation and illustration of data grow exponentially. Due to the large scale datasets, curse of dimensionality (CoD) is one of the NP-hard problems in data science. Hence, several efforts have been focused on leveraging evolutionary algorithms (EAs) to address the complex issues in large scale data analytics problems. Dimension reduction, together with EAs, lends itself to solve CoD and solve complex problems, in terms of time complexity, efficiently. In this chapter, we first provide a brief overview of previous studies that focused on solving CoD using feature extraction optimization process. We then discuss practical examples of research studies that successfully tackled some application domains, such as image processing, sentiment analysis, network traffics/anomalies analysis, credit score analysis and other benchmark functions/datasets analysis." @default.
- W2969350434 created "2019-08-29" @default.
- W2969350434 creator A5005432053 @default.
- W2969350434 creator A5011566382 @default.
- W2969350434 creator A5032642808 @default.
- W2969350434 date "2020-01-01" @default.
- W2969350434 modified "2023-10-12" @default.
- W2969350434 title "Applications of Nature-Inspired Algorithms for Dimension Reduction: Enabling Efficient Data Analytics" @default.
- W2969350434 cites W1416942850 @default.
- W2969350434 cites W1583700199 @default.
- W2969350434 cites W1963763787 @default.
- W2969350434 cites W1968523955 @default.
- W2969350434 cites W1982772336 @default.
- W2969350434 cites W1987050387 @default.
- W2969350434 cites W2004373333 @default.
- W2969350434 cites W2040420455 @default.
- W2969350434 cites W2117613928 @default.
- W2969350434 cites W2142251041 @default.
- W2969350434 cites W2228138522 @default.
- W2969350434 cites W2537462589 @default.
- W2969350434 cites W2563375135 @default.
- W2969350434 cites W2592840293 @default.
- W2969350434 cites W2602420801 @default.
- W2969350434 cites W2612442180 @default.
- W2969350434 cites W2728589936 @default.
- W2969350434 cites W2739608398 @default.
- W2969350434 cites W2752931993 @default.
- W2969350434 cites W2754840697 @default.
- W2969350434 cites W2756940441 @default.
- W2969350434 cites W2783320270 @default.
- W2969350434 cites W2785313315 @default.
- W2969350434 cites W2794866761 @default.
- W2969350434 cites W2811177188 @default.
- W2969350434 cites W2889083964 @default.
- W2969350434 cites W2890727573 @default.
- W2969350434 cites W2899750879 @default.
- W2969350434 cites W2900971016 @default.
- W2969350434 cites W2901312974 @default.
- W2969350434 cites W2901326905 @default.
- W2969350434 cites W2902016849 @default.
- W2969350434 cites W2905319558 @default.
- W2969350434 cites W2913907900 @default.
- W2969350434 cites W2914033848 @default.
- W2969350434 cites W2924610876 @default.
- W2969350434 cites W2928842276 @default.
- W2969350434 cites W2933331543 @default.
- W2969350434 cites W2953877793 @default.
- W2969350434 cites W2981393483 @default.
- W2969350434 cites W2986607214 @default.
- W2969350434 cites W3101640299 @default.
- W2969350434 cites W3116416126 @default.
- W2969350434 cites W4231592819 @default.
- W2969350434 doi "https://doi.org/10.1007/978-3-030-34094-0_4" @default.
- W2969350434 hasPublicationYear "2020" @default.
- W2969350434 type Work @default.
- W2969350434 sameAs 2969350434 @default.
- W2969350434 citedByCount "8" @default.
- W2969350434 countsByYear W29693504342020 @default.
- W2969350434 countsByYear W29693504342021 @default.
- W2969350434 countsByYear W29693504342022 @default.
- W2969350434 crossrefType "book-chapter" @default.
- W2969350434 hasAuthorship W2969350434A5005432053 @default.
- W2969350434 hasAuthorship W2969350434A5011566382 @default.
- W2969350434 hasAuthorship W2969350434A5032642808 @default.
- W2969350434 hasBestOaLocation W29693504342 @default.
- W2969350434 hasConcept C105902424 @default.
- W2969350434 hasConcept C111030470 @default.
- W2969350434 hasConcept C111919701 @default.
- W2969350434 hasConcept C11413529 @default.
- W2969350434 hasConcept C119857082 @default.
- W2969350434 hasConcept C124101348 @default.
- W2969350434 hasConcept C134306372 @default.
- W2969350434 hasConcept C137836250 @default.
- W2969350434 hasConcept C148483581 @default.
- W2969350434 hasConcept C154945302 @default.
- W2969350434 hasConcept C159149176 @default.
- W2969350434 hasConcept C202444582 @default.
- W2969350434 hasConcept C33676613 @default.
- W2969350434 hasConcept C33923547 @default.
- W2969350434 hasConcept C36503486 @default.
- W2969350434 hasConcept C41008148 @default.
- W2969350434 hasConcept C70518039 @default.
- W2969350434 hasConcept C75684735 @default.
- W2969350434 hasConcept C79158427 @default.
- W2969350434 hasConcept C81917197 @default.
- W2969350434 hasConcept C98045186 @default.
- W2969350434 hasConceptScore W2969350434C105902424 @default.
- W2969350434 hasConceptScore W2969350434C111030470 @default.
- W2969350434 hasConceptScore W2969350434C111919701 @default.
- W2969350434 hasConceptScore W2969350434C11413529 @default.
- W2969350434 hasConceptScore W2969350434C119857082 @default.
- W2969350434 hasConceptScore W2969350434C124101348 @default.
- W2969350434 hasConceptScore W2969350434C134306372 @default.
- W2969350434 hasConceptScore W2969350434C137836250 @default.
- W2969350434 hasConceptScore W2969350434C148483581 @default.
- W2969350434 hasConceptScore W2969350434C154945302 @default.
- W2969350434 hasConceptScore W2969350434C159149176 @default.
- W2969350434 hasConceptScore W2969350434C202444582 @default.