Matches in SemOpenAlex for { <https://semopenalex.org/work/W2969371053> ?p ?o ?g. }
- W2969371053 endingPage "1979" @default.
- W2969371053 startingPage "1979" @default.
- W2969371053 abstract "Different types of methods have been developed to retrieve vegetation attributes from remote sensing data, including conventional empirical regressions (i.e., linear regression (LR)), advanced empirical regressions (e.g., multivariable linear regression (MLR), partial least square regression (PLSR)), machine learning (e.g., random forest regression (RFR), decision tree regression (DTR)), and radiative transfer modelling (RTM, e.g., PROSAIL). Given that each algorithm has its own strengths and weaknesses, it is essential to compare them and evaluate their effectiveness. Previous studies have mainly used single-date multispectral imagery or ground-based hyperspectral reflectance data for evaluating the models, while multi-seasonal hyperspectral images have been rarely used. Extensive spectral and spatial information in hyperspectral images, as well as temporal variations of landscapes, potentially influence the model performance. In this research, LR, PLSR, RFR, and PROSAIL, representing different types of methods, were evaluated for estimating vegetation chlorophyll content from bi-seasonal hyperspectral images (i.e., a middle- and a late-growing season image, respectively). Results show that the PLSR and RFR generally performed better than LR and PROSAIL. RFR achieved the highest accuracy for both images. This research provides insights on the effectiveness of different models for estimating vegetation chlorophyll content using hyperspectral images, aiming to support future vegetation monitoring research." @default.
- W2969371053 created "2019-08-29" @default.
- W2969371053 creator A5055319860 @default.
- W2969371053 creator A5083745435 @default.
- W2969371053 date "2019-08-22" @default.
- W2969371053 modified "2023-09-26" @default.
- W2969371053 title "Evaluating Empirical Regression, Machine Learning, and Radiative Transfer Modelling for Estimating Vegetation Chlorophyll Content Using Bi-Seasonal Hyperspectral Images" @default.
- W2969371053 cites W1681494015 @default.
- W2969371053 cites W1683383071 @default.
- W2969371053 cites W1827322724 @default.
- W2969371053 cites W1848144067 @default.
- W2969371053 cites W1868830233 @default.
- W2969371053 cites W1948133483 @default.
- W2969371053 cites W1966123034 @default.
- W2969371053 cites W1966675249 @default.
- W2969371053 cites W1985555755 @default.
- W2969371053 cites W1986136566 @default.
- W2969371053 cites W1988392308 @default.
- W2969371053 cites W1988872612 @default.
- W2969371053 cites W1990763871 @default.
- W2969371053 cites W2000102737 @default.
- W2969371053 cites W2000485836 @default.
- W2969371053 cites W2000911998 @default.
- W2969371053 cites W2002495580 @default.
- W2969371053 cites W2012686349 @default.
- W2969371053 cites W2013328968 @default.
- W2969371053 cites W2018627383 @default.
- W2969371053 cites W2025967407 @default.
- W2969371053 cites W2029567272 @default.
- W2969371053 cites W2033275656 @default.
- W2969371053 cites W2036003376 @default.
- W2969371053 cites W2051128904 @default.
- W2969371053 cites W2052700773 @default.
- W2969371053 cites W2054172243 @default.
- W2969371053 cites W2059863962 @default.
- W2969371053 cites W2064263183 @default.
- W2969371053 cites W2064638681 @default.
- W2969371053 cites W2066612219 @default.
- W2969371053 cites W2070203790 @default.
- W2969371053 cites W2071884019 @default.
- W2969371053 cites W2073226970 @default.
- W2969371053 cites W2089441588 @default.
- W2969371053 cites W2089464686 @default.
- W2969371053 cites W2102273661 @default.
- W2969371053 cites W2105770001 @default.
- W2969371053 cites W2109006150 @default.
- W2969371053 cites W2114535331 @default.
- W2969371053 cites W2116563724 @default.
- W2969371053 cites W2117134952 @default.
- W2969371053 cites W2118791227 @default.
- W2969371053 cites W2121025745 @default.
- W2969371053 cites W2125459444 @default.
- W2969371053 cites W2128438912 @default.
- W2969371053 cites W2129483042 @default.
- W2969371053 cites W2133424675 @default.
- W2969371053 cites W2133751300 @default.
- W2969371053 cites W2134135954 @default.
- W2969371053 cites W2137608957 @default.
- W2969371053 cites W2139925058 @default.
- W2969371053 cites W2145669224 @default.
- W2969371053 cites W2148279246 @default.
- W2969371053 cites W2153398128 @default.
- W2969371053 cites W2157760685 @default.
- W2969371053 cites W2159961845 @default.
- W2969371053 cites W2161548576 @default.
- W2969371053 cites W2161815745 @default.
- W2969371053 cites W2166307050 @default.
- W2969371053 cites W2171979590 @default.
- W2969371053 cites W2185381323 @default.
- W2969371053 cites W2188115011 @default.
- W2969371053 cites W2248139498 @default.
- W2969371053 cites W2261059368 @default.
- W2969371053 cites W2288583194 @default.
- W2969371053 cites W2317582304 @default.
- W2969371053 cites W2568570924 @default.
- W2969371053 cites W2592760899 @default.
- W2969371053 cites W2603798200 @default.
- W2969371053 cites W2736116482 @default.
- W2969371053 cites W2743182111 @default.
- W2969371053 cites W2752142567 @default.
- W2969371053 cites W2758132920 @default.
- W2969371053 cites W2766859801 @default.
- W2969371053 cites W2768915379 @default.
- W2969371053 cites W2784201940 @default.
- W2969371053 cites W2788094407 @default.
- W2969371053 cites W2910412160 @default.
- W2969371053 cites W2911964244 @default.
- W2969371053 doi "https://doi.org/10.3390/rs11171979" @default.
- W2969371053 hasPublicationYear "2019" @default.
- W2969371053 type Work @default.
- W2969371053 sameAs 2969371053 @default.
- W2969371053 citedByCount "27" @default.
- W2969371053 countsByYear W29693710532020 @default.
- W2969371053 countsByYear W29693710532021 @default.
- W2969371053 countsByYear W29693710532022 @default.
- W2969371053 countsByYear W29693710532023 @default.
- W2969371053 crossrefType "journal-article" @default.
- W2969371053 hasAuthorship W2969371053A5055319860 @default.