Matches in SemOpenAlex for { <https://semopenalex.org/work/W2969372261> ?p ?o ?g. }
- W2969372261 endingPage "6794" @default.
- W2969372261 startingPage "6785" @default.
- W2969372261 abstract "In the recent years, data-driven machinery fault diagnostic methods have been successfully developed, and the tasks where the training and testing data are from the same distribution have been well addressed. However, due to sensor malfunctions, the training and testing data can be collected at different places of machines, resulting in the feature space with significant distribution discrepancy. This challenging issue has received less attention in the current literature, and the existing approaches generally fail in such scenarios. This article proposes a domain adaptation method for machinery fault diagnostics based on deep learning. Adversarial training is introduced for marginal domain fusion, and unsupervised parallel data are explored to achieve conditional distribution alignments with respect to different machine health conditions. Experiments on two rotating machinery datasets are carried out for validations. The results suggest the proposed method is promising to address the fault diagnostic tasks with data from different places of machines, further enhancing applicability of data-driven methods in real industries." @default.
- W2969372261 created "2019-08-29" @default.
- W2969372261 creator A5015815806 @default.
- W2969372261 creator A5018352471 @default.
- W2969372261 creator A5051573610 @default.
- W2969372261 creator A5052381807 @default.
- W2969372261 date "2020-08-01" @default.
- W2969372261 modified "2023-10-16" @default.
- W2969372261 title "Deep Learning-Based Machinery Fault Diagnostics With Domain Adaptation Across Sensors at Different Places" @default.
- W2969372261 cites W2317595875 @default.
- W2969372261 cites W243674440 @default.
- W2969372261 cites W2480364715 @default.
- W2969372261 cites W2556013418 @default.
- W2969372261 cites W2584994008 @default.
- W2969372261 cites W2590288147 @default.
- W2969372261 cites W2591055632 @default.
- W2969372261 cites W2593768305 @default.
- W2969372261 cites W2756073160 @default.
- W2969372261 cites W2758375579 @default.
- W2969372261 cites W2763583057 @default.
- W2969372261 cites W2772084711 @default.
- W2969372261 cites W2773549135 @default.
- W2969372261 cites W2792018332 @default.
- W2969372261 cites W2803884688 @default.
- W2969372261 cites W2891319189 @default.
- W2969372261 cites W2898375427 @default.
- W2969372261 cites W2899279252 @default.
- W2969372261 cites W2900438754 @default.
- W2969372261 cites W2904218127 @default.
- W2969372261 cites W2907541186 @default.
- W2969372261 cites W2912073957 @default.
- W2969372261 cites W2914298094 @default.
- W2969372261 cites W2922660557 @default.
- W2969372261 cites W2927893014 @default.
- W2969372261 cites W2939535241 @default.
- W2969372261 cites W2940935128 @default.
- W2969372261 cites W2962986791 @default.
- W2969372261 doi "https://doi.org/10.1109/tie.2019.2935987" @default.
- W2969372261 hasPublicationYear "2020" @default.
- W2969372261 type Work @default.
- W2969372261 sameAs 2969372261 @default.
- W2969372261 citedByCount "121" @default.
- W2969372261 countsByYear W29693722612020 @default.
- W2969372261 countsByYear W29693722612021 @default.
- W2969372261 countsByYear W29693722612022 @default.
- W2969372261 countsByYear W29693722612023 @default.
- W2969372261 crossrefType "journal-article" @default.
- W2969372261 hasAuthorship W2969372261A5015815806 @default.
- W2969372261 hasAuthorship W2969372261A5018352471 @default.
- W2969372261 hasAuthorship W2969372261A5051573610 @default.
- W2969372261 hasAuthorship W2969372261A5052381807 @default.
- W2969372261 hasConcept C108583219 @default.
- W2969372261 hasConcept C119857082 @default.
- W2969372261 hasConcept C120665830 @default.
- W2969372261 hasConcept C121332964 @default.
- W2969372261 hasConcept C124101348 @default.
- W2969372261 hasConcept C127313418 @default.
- W2969372261 hasConcept C134306372 @default.
- W2969372261 hasConcept C138885662 @default.
- W2969372261 hasConcept C139807058 @default.
- W2969372261 hasConcept C152745839 @default.
- W2969372261 hasConcept C154945302 @default.
- W2969372261 hasConcept C165205528 @default.
- W2969372261 hasConcept C172707124 @default.
- W2969372261 hasConcept C175551986 @default.
- W2969372261 hasConcept C2776401178 @default.
- W2969372261 hasConcept C2776434776 @default.
- W2969372261 hasConcept C33923547 @default.
- W2969372261 hasConcept C33954974 @default.
- W2969372261 hasConcept C36503486 @default.
- W2969372261 hasConcept C37736160 @default.
- W2969372261 hasConcept C41008148 @default.
- W2969372261 hasConcept C41895202 @default.
- W2969372261 hasConcept C83665646 @default.
- W2969372261 hasConcept C95623464 @default.
- W2969372261 hasConceptScore W2969372261C108583219 @default.
- W2969372261 hasConceptScore W2969372261C119857082 @default.
- W2969372261 hasConceptScore W2969372261C120665830 @default.
- W2969372261 hasConceptScore W2969372261C121332964 @default.
- W2969372261 hasConceptScore W2969372261C124101348 @default.
- W2969372261 hasConceptScore W2969372261C127313418 @default.
- W2969372261 hasConceptScore W2969372261C134306372 @default.
- W2969372261 hasConceptScore W2969372261C138885662 @default.
- W2969372261 hasConceptScore W2969372261C139807058 @default.
- W2969372261 hasConceptScore W2969372261C152745839 @default.
- W2969372261 hasConceptScore W2969372261C154945302 @default.
- W2969372261 hasConceptScore W2969372261C165205528 @default.
- W2969372261 hasConceptScore W2969372261C172707124 @default.
- W2969372261 hasConceptScore W2969372261C175551986 @default.
- W2969372261 hasConceptScore W2969372261C2776401178 @default.
- W2969372261 hasConceptScore W2969372261C2776434776 @default.
- W2969372261 hasConceptScore W2969372261C33923547 @default.
- W2969372261 hasConceptScore W2969372261C33954974 @default.
- W2969372261 hasConceptScore W2969372261C36503486 @default.
- W2969372261 hasConceptScore W2969372261C37736160 @default.
- W2969372261 hasConceptScore W2969372261C41008148 @default.
- W2969372261 hasConceptScore W2969372261C41895202 @default.
- W2969372261 hasConceptScore W2969372261C83665646 @default.