Matches in SemOpenAlex for { <https://semopenalex.org/work/W2969395562> ?p ?o ?g. }
- W2969395562 endingPage "T827" @default.
- W2969395562 startingPage "T819" @default.
- W2969395562 abstract "Machine learning (ML) has recently gained immense popularity because of its successful application in complex problems. It develops an abstract relation between the input and output. We have evaluated the application of ML to the most basic seismic processing of normal moveout (NMO) correction. The arrival times of reflection events in a common midpoint (CMP) gather follow a hyperbolic trajectory; thus, they require a correction term to flatten the CMP gather before stacking. This correction term depends on an rms velocity, also referred to as the NMO velocity. In general, NMO velocity is estimated using the semblance measures and picking the peaks in the velocity panel. This process requires a lot of human intervention and computation time. We have developed a novel method using one of the tools based on an ML- approach and applied to the NMO velocity estimation problem. We use the recurrent neural network (RNN) to estimate the NMO velocity directly from the seismic data. The input to the network is a seismic gather and corresponding precalculated NMO velocity (as prelabeled data set) to flatten the gather. We first train the network to develop a relationship between the input gathers (before NMO correction) and the corresponding NMO velocities for a few CMPs as a supervised learning process. Adam optimization algorithm is used to train the RNN. The output from the network is then compared against the correct NMO velocity. The error between the two velocities is then used to update the weight of the neurons and to minimize the mean-squared error between the two velocities. After the network is trained, it can be used to calculate the NMO velocity for the rest of the seismic gathers. We evaluate our method on a noisy data set from Poland. We used only 10% of the CMPs to train the network, and then we used the trained network to predict NMO velocity for the remaining CMP locations. The stack section obtained by using RNN-generated NMO velocities is nearly identical to that obtained by the conventional semblance method." @default.
- W2969395562 created "2019-08-29" @default.
- W2969395562 creator A5041533172 @default.
- W2969395562 creator A5045824622 @default.
- W2969395562 creator A5049953220 @default.
- W2969395562 creator A5079645317 @default.
- W2969395562 date "2019-11-01" @default.
- W2969395562 modified "2023-09-23" @default.
- W2969395562 title "Estimating normal moveout velocity using the recurrent neural network" @default.
- W2969395562 cites W1901129140 @default.
- W2969395562 cites W2009990396 @default.
- W2969395562 cites W2014918748 @default.
- W2969395562 cites W2017058348 @default.
- W2969395562 cites W2021974973 @default.
- W2969395562 cites W2024235597 @default.
- W2969395562 cites W2051909838 @default.
- W2969395562 cites W2053376610 @default.
- W2969395562 cites W2058580716 @default.
- W2969395562 cites W2064675550 @default.
- W2969395562 cites W2078496737 @default.
- W2969395562 cites W2082380532 @default.
- W2969395562 cites W2091121667 @default.
- W2969395562 cites W2100495367 @default.
- W2969395562 cites W2102589063 @default.
- W2969395562 cites W2102605133 @default.
- W2969395562 cites W2106985413 @default.
- W2969395562 cites W2117539524 @default.
- W2969395562 cites W2128084896 @default.
- W2969395562 cites W2147800946 @default.
- W2969395562 cites W2171865010 @default.
- W2969395562 cites W2194775991 @default.
- W2969395562 cites W2289565177 @default.
- W2969395562 cites W2408520939 @default.
- W2969395562 cites W2889825544 @default.
- W2969395562 cites W2889885422 @default.
- W2969395562 cites W2891111066 @default.
- W2969395562 cites W2891410387 @default.
- W2969395562 cites W2891890374 @default.
- W2969395562 cites W2891932361 @default.
- W2969395562 cites W2912913790 @default.
- W2969395562 cites W2947704004 @default.
- W2969395562 cites W4210925605 @default.
- W2969395562 cites W4252167944 @default.
- W2969395562 doi "https://doi.org/10.1190/int-2018-0243.1" @default.
- W2969395562 hasPublicationYear "2019" @default.
- W2969395562 type Work @default.
- W2969395562 sameAs 2969395562 @default.
- W2969395562 citedByCount "11" @default.
- W2969395562 countsByYear W29693955622021 @default.
- W2969395562 countsByYear W29693955622022 @default.
- W2969395562 countsByYear W29693955622023 @default.
- W2969395562 crossrefType "journal-article" @default.
- W2969395562 hasAuthorship W2969395562A5041533172 @default.
- W2969395562 hasAuthorship W2969395562A5045824622 @default.
- W2969395562 hasAuthorship W2969395562A5049953220 @default.
- W2969395562 hasAuthorship W2969395562A5079645317 @default.
- W2969395562 hasConcept C111919701 @default.
- W2969395562 hasConcept C11413529 @default.
- W2969395562 hasConcept C121332964 @default.
- W2969395562 hasConcept C1276947 @default.
- W2969395562 hasConcept C13662910 @default.
- W2969395562 hasConcept C147168706 @default.
- W2969395562 hasConcept C154945302 @default.
- W2969395562 hasConcept C175291020 @default.
- W2969395562 hasConcept C177264268 @default.
- W2969395562 hasConcept C199360897 @default.
- W2969395562 hasConcept C41008148 @default.
- W2969395562 hasConcept C45374587 @default.
- W2969395562 hasConcept C50644808 @default.
- W2969395562 hasConcept C61797465 @default.
- W2969395562 hasConcept C62520636 @default.
- W2969395562 hasConcept C65682993 @default.
- W2969395562 hasConcept C98045186 @default.
- W2969395562 hasConcept C9984622 @default.
- W2969395562 hasConceptScore W2969395562C111919701 @default.
- W2969395562 hasConceptScore W2969395562C11413529 @default.
- W2969395562 hasConceptScore W2969395562C121332964 @default.
- W2969395562 hasConceptScore W2969395562C1276947 @default.
- W2969395562 hasConceptScore W2969395562C13662910 @default.
- W2969395562 hasConceptScore W2969395562C147168706 @default.
- W2969395562 hasConceptScore W2969395562C154945302 @default.
- W2969395562 hasConceptScore W2969395562C175291020 @default.
- W2969395562 hasConceptScore W2969395562C177264268 @default.
- W2969395562 hasConceptScore W2969395562C199360897 @default.
- W2969395562 hasConceptScore W2969395562C41008148 @default.
- W2969395562 hasConceptScore W2969395562C45374587 @default.
- W2969395562 hasConceptScore W2969395562C50644808 @default.
- W2969395562 hasConceptScore W2969395562C61797465 @default.
- W2969395562 hasConceptScore W2969395562C62520636 @default.
- W2969395562 hasConceptScore W2969395562C65682993 @default.
- W2969395562 hasConceptScore W2969395562C98045186 @default.
- W2969395562 hasConceptScore W2969395562C9984622 @default.
- W2969395562 hasIssue "4" @default.
- W2969395562 hasLocation W29693955621 @default.
- W2969395562 hasOpenAccess W2969395562 @default.
- W2969395562 hasPrimaryLocation W29693955621 @default.
- W2969395562 hasRelatedWork W1572419878 @default.
- W2969395562 hasRelatedWork W2010999479 @default.