Matches in SemOpenAlex for { <https://semopenalex.org/work/W2969422541> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W2969422541 endingPage "144" @default.
- W2969422541 startingPage "129" @default.
- W2969422541 abstract "In Chaps. 3 and 4 , we have explored the theoretical aspects of feature extraction optimization processes for solving large-scale problems and overcoming machine learning limitations. Majority of optimization algorithms that have been introduced in Mohammadi et al. (Evolutionary computation, optimization and learning algorithms for data science, 2019. arXiv preprint arXiv: 1908.08006; Applications of nature-i nspired algorithms for dimension reduction: enabling efficient data analytics, 2019. arXiv preprint arXiv: 1908.08563) guarantee the optimal performance of supervised learning, given offline and discrete data, to deal with curse of dimensionality (CoD) problem. These algorithms, however, are not tailored for solving emerging learning problems. One of the important issues caused by online data is lack of sufficient samples per class. Further, traditional machine learning algorithms cannot achieve accurate training based on limited distributed data, as data has proliferated and dispersed significantly. Machine learning employs a strict model or embedded engine to train and predict which still fails to learn unseen classes and sufficiently use online data. In this chapter, we introduce these challenges elaborately. We further investigate meta-learning (MTL) algorithm, and their application and promises to solve the emerging problems by answering how autonomous agents can learn to learn?" @default.
- W2969422541 created "2019-08-29" @default.
- W2969422541 creator A5005432053 @default.
- W2969422541 creator A5011566382 @default.
- W2969422541 creator A5032642808 @default.
- W2969422541 date "2020-01-01" @default.
- W2969422541 modified "2023-10-16" @default.
- W2969422541 title "An Introduction to Advanced Machine Learning: Meta-Learning Algorithms, Applications, and Promises" @default.
- W2969422541 cites W1527338945 @default.
- W2969422541 cites W1570963478 @default.
- W2969422541 cites W2064675550 @default.
- W2969422541 cites W2145680191 @default.
- W2969422541 cites W2194321275 @default.
- W2969422541 cites W2803290558 @default.
- W2969422541 cites W2807652398 @default.
- W2969422541 cites W2895771060 @default.
- W2969422541 cites W2955338161 @default.
- W2969422541 cites W2962712569 @default.
- W2969422541 cites W2963943197 @default.
- W2969422541 cites W2981393483 @default.
- W2969422541 cites W2986607214 @default.
- W2969422541 cites W3116416126 @default.
- W2969422541 doi "https://doi.org/10.1007/978-3-030-34094-0_6" @default.
- W2969422541 hasPublicationYear "2020" @default.
- W2969422541 type Work @default.
- W2969422541 sameAs 2969422541 @default.
- W2969422541 citedByCount "9" @default.
- W2969422541 countsByYear W29694225412020 @default.
- W2969422541 countsByYear W29694225412021 @default.
- W2969422541 countsByYear W29694225412022 @default.
- W2969422541 countsByYear W29694225412023 @default.
- W2969422541 crossrefType "book-chapter" @default.
- W2969422541 hasAuthorship W2969422541A5005432053 @default.
- W2969422541 hasAuthorship W2969422541A5011566382 @default.
- W2969422541 hasAuthorship W2969422541A5032642808 @default.
- W2969422541 hasBestOaLocation W29694225412 @default.
- W2969422541 hasConcept C111030470 @default.
- W2969422541 hasConcept C11413529 @default.
- W2969422541 hasConcept C119857082 @default.
- W2969422541 hasConcept C136764020 @default.
- W2969422541 hasConcept C154945302 @default.
- W2969422541 hasConcept C162324750 @default.
- W2969422541 hasConcept C187736073 @default.
- W2969422541 hasConcept C202444582 @default.
- W2969422541 hasConcept C2780451532 @default.
- W2969422541 hasConcept C2781002164 @default.
- W2969422541 hasConcept C33676613 @default.
- W2969422541 hasConcept C33923547 @default.
- W2969422541 hasConcept C41008148 @default.
- W2969422541 hasConcept C43169469 @default.
- W2969422541 hasConcept C70518039 @default.
- W2969422541 hasConceptScore W2969422541C111030470 @default.
- W2969422541 hasConceptScore W2969422541C11413529 @default.
- W2969422541 hasConceptScore W2969422541C119857082 @default.
- W2969422541 hasConceptScore W2969422541C136764020 @default.
- W2969422541 hasConceptScore W2969422541C154945302 @default.
- W2969422541 hasConceptScore W2969422541C162324750 @default.
- W2969422541 hasConceptScore W2969422541C187736073 @default.
- W2969422541 hasConceptScore W2969422541C202444582 @default.
- W2969422541 hasConceptScore W2969422541C2780451532 @default.
- W2969422541 hasConceptScore W2969422541C2781002164 @default.
- W2969422541 hasConceptScore W2969422541C33676613 @default.
- W2969422541 hasConceptScore W2969422541C33923547 @default.
- W2969422541 hasConceptScore W2969422541C41008148 @default.
- W2969422541 hasConceptScore W2969422541C43169469 @default.
- W2969422541 hasConceptScore W2969422541C70518039 @default.
- W2969422541 hasLocation W29694225411 @default.
- W2969422541 hasLocation W29694225412 @default.
- W2969422541 hasLocation W29694225413 @default.
- W2969422541 hasOpenAccess W2969422541 @default.
- W2969422541 hasPrimaryLocation W29694225411 @default.
- W2969422541 hasRelatedWork W2319450352 @default.
- W2969422541 hasRelatedWork W2969544681 @default.
- W2969422541 hasRelatedWork W3022704604 @default.
- W2969422541 hasRelatedWork W3122240332 @default.
- W2969422541 hasRelatedWork W3123566319 @default.
- W2969422541 hasRelatedWork W3199608561 @default.
- W2969422541 hasRelatedWork W398889120 @default.
- W2969422541 hasRelatedWork W4293087755 @default.
- W2969422541 hasRelatedWork W4319309271 @default.
- W2969422541 hasRelatedWork W4323546569 @default.
- W2969422541 isParatext "false" @default.
- W2969422541 isRetracted "false" @default.
- W2969422541 magId "2969422541" @default.
- W2969422541 workType "book-chapter" @default.