Matches in SemOpenAlex for { <https://semopenalex.org/work/W2969448064> ?p ?o ?g. }
- W2969448064 endingPage "783" @default.
- W2969448064 startingPage "783" @default.
- W2969448064 abstract "Empirical mode decomposition (EMD)-based methods are powerful digital signal processing techniques because they do not need a priori information of the target signal due to their intrinsic adaptive behavior. Moreover, they can deal with non-linear and non-stationary signals. This paper presents the field programmable gate array (FPGA) implementation for the complete ensemble empirical mode decomposition (CEEMD) method, which is applied to the condition monitoring of an induction motor. The CEEMD method is chosen since it overcomes the performance of EMD and EEMD (ensemble empirical mode decomposition) methods. As a first application of the proposed FPGA-based system, the proposal is used as a processing technique for feature extraction in order to detect and classify broken rotor bar faults in induction motors. In order to obtain a complete online monitoring system, the feature extraction and classification modules are also implemented on the FPGA. Results show that an average effectiveness of 96% is obtained during the fault detection." @default.
- W2969448064 created "2019-08-29" @default.
- W2969448064 creator A5036900700 @default.
- W2969448064 creator A5048063678 @default.
- W2969448064 creator A5084910067 @default.
- W2969448064 creator A5087434144 @default.
- W2969448064 date "2019-08-25" @default.
- W2969448064 modified "2023-09-26" @default.
- W2969448064 title "Complete Ensemble Empirical Mode Decomposition on FPGA for Condition Monitoring of Broken Bars in Induction Motors" @default.
- W2969448064 cites W1820534876 @default.
- W2969448064 cites W1967745406 @default.
- W2969448064 cites W1971033241 @default.
- W2969448064 cites W2007221293 @default.
- W2969448064 cites W2012120314 @default.
- W2969448064 cites W2020998594 @default.
- W2969448064 cites W2034440210 @default.
- W2969448064 cites W2036947671 @default.
- W2969448064 cites W2055899744 @default.
- W2969448064 cites W2057318207 @default.
- W2969448064 cites W2063530343 @default.
- W2969448064 cites W2090218979 @default.
- W2969448064 cites W2091229088 @default.
- W2969448064 cites W2095257860 @default.
- W2969448064 cites W2099395778 @default.
- W2969448064 cites W2110213491 @default.
- W2969448064 cites W2120390927 @default.
- W2969448064 cites W2168961103 @default.
- W2969448064 cites W2168964850 @default.
- W2969448064 cites W2170547958 @default.
- W2969448064 cites W2171529802 @default.
- W2969448064 cites W2295143356 @default.
- W2969448064 cites W2344140730 @default.
- W2969448064 cites W2538378505 @default.
- W2969448064 cites W2547065118 @default.
- W2969448064 cites W2588147877 @default.
- W2969448064 cites W2597701414 @default.
- W2969448064 cites W2606789935 @default.
- W2969448064 cites W2624112932 @default.
- W2969448064 cites W2771983901 @default.
- W2969448064 cites W2791694051 @default.
- W2969448064 cites W2819539323 @default.
- W2969448064 cites W2890142594 @default.
- W2969448064 cites W2917762487 @default.
- W2969448064 cites W2945036977 @default.
- W2969448064 cites W2953751224 @default.
- W2969448064 doi "https://doi.org/10.3390/math7090783" @default.
- W2969448064 hasPublicationYear "2019" @default.
- W2969448064 type Work @default.
- W2969448064 sameAs 2969448064 @default.
- W2969448064 citedByCount "11" @default.
- W2969448064 countsByYear W29694480642019 @default.
- W2969448064 countsByYear W29694480642020 @default.
- W2969448064 countsByYear W29694480642021 @default.
- W2969448064 countsByYear W29694480642022 @default.
- W2969448064 countsByYear W29694480642023 @default.
- W2969448064 crossrefType "journal-article" @default.
- W2969448064 hasAuthorship W2969448064A5036900700 @default.
- W2969448064 hasAuthorship W2969448064A5048063678 @default.
- W2969448064 hasAuthorship W2969448064A5084910067 @default.
- W2969448064 hasAuthorship W2969448064A5087434144 @default.
- W2969448064 hasBestOaLocation W29694480641 @default.
- W2969448064 hasConcept C104267543 @default.
- W2969448064 hasConcept C106131492 @default.
- W2969448064 hasConcept C111472728 @default.
- W2969448064 hasConcept C111919701 @default.
- W2969448064 hasConcept C114237110 @default.
- W2969448064 hasConcept C119599485 @default.
- W2969448064 hasConcept C124681953 @default.
- W2969448064 hasConcept C127313418 @default.
- W2969448064 hasConcept C127413603 @default.
- W2969448064 hasConcept C138885662 @default.
- W2969448064 hasConcept C152745839 @default.
- W2969448064 hasConcept C153180895 @default.
- W2969448064 hasConcept C154945302 @default.
- W2969448064 hasConcept C165205528 @default.
- W2969448064 hasConcept C165801399 @default.
- W2969448064 hasConcept C172707124 @default.
- W2969448064 hasConcept C17281054 @default.
- W2969448064 hasConcept C175551986 @default.
- W2969448064 hasConcept C18903297 @default.
- W2969448064 hasConcept C199360897 @default.
- W2969448064 hasConcept C25570617 @default.
- W2969448064 hasConcept C2775846686 @default.
- W2969448064 hasConcept C2776401178 @default.
- W2969448064 hasConcept C2779843651 @default.
- W2969448064 hasConcept C31972630 @default.
- W2969448064 hasConcept C41008148 @default.
- W2969448064 hasConcept C41895202 @default.
- W2969448064 hasConcept C42935608 @default.
- W2969448064 hasConcept C48677424 @default.
- W2969448064 hasConcept C52622490 @default.
- W2969448064 hasConcept C75553542 @default.
- W2969448064 hasConcept C80962145 @default.
- W2969448064 hasConcept C84462506 @default.
- W2969448064 hasConcept C86803240 @default.
- W2969448064 hasConcept C9390403 @default.
- W2969448064 hasConceptScore W2969448064C104267543 @default.
- W2969448064 hasConceptScore W2969448064C106131492 @default.