Matches in SemOpenAlex for { <https://semopenalex.org/work/W2969454153> ?p ?o ?g. }
- W2969454153 endingPage "815" @default.
- W2969454153 startingPage "785" @default.
- W2969454153 abstract "The use of the latent semantic analysis (LSA) in text mining demands large space and time requirements. This paper proposes a new text extraction method that sets a framework on how to employ the statistical semantic analysis in the text extraction in an efficient way. The method uses the centrality feature and omits the segments of the text that have a high verbatim, statistical, or semantic similarity with previously processed segments. The identification of similarity is based on a new multi-layer similarity method that computes the similarity in three statistical layers, it uses the Jaccard similarity and the vector space model in the first and second layers respectively, and uses the LSA in the third layer. The multi-layer similarity restricts the use of the third layer for the segments that the first and second layers failed to estimate their similarities. Rouge tool is used in the evaluation, but because Rouge does not consider the extract’s size, we supplemented it with a new evaluation strategy based on the compression rate and the ratio of the sentences intersections between the automatic and the reference extracts. Our comparisons with classical LSA and traditional statistical extractions showed that we reduced the use of the LSA procedure by 52%, and we obtained 65% reduction on the original matrix dimensions, also, we obtained remarkable accuracy results. It is concluded that the employment of the centrality feature with the proposed multi-layer framework yields a significant solution in terms of efficiency and accuracy in the field of text extraction." @default.
- W2969454153 created "2019-08-29" @default.
- W2969454153 creator A5002204703 @default.
- W2969454153 creator A5003244142 @default.
- W2969454153 creator A5066533839 @default.
- W2969454153 date "2019-08-21" @default.
- W2969454153 modified "2023-09-23" @default.
- W2969454153 title "An efficient framework of utilizing the latent semantic analysis in text extraction" @default.
- W2969454153 cites W1609322516 @default.
- W2969454153 cites W1974339500 @default.
- W2969454153 cites W1984600142 @default.
- W2969454153 cites W1985697096 @default.
- W2969454153 cites W1986154307 @default.
- W2969454153 cites W1994472257 @default.
- W2969454153 cites W2007407316 @default.
- W2969454153 cites W2013952257 @default.
- W2969454153 cites W2024381473 @default.
- W2969454153 cites W2058200401 @default.
- W2969454153 cites W2062319581 @default.
- W2969454153 cites W2088795315 @default.
- W2969454153 cites W2092246763 @default.
- W2969454153 cites W2094515246 @default.
- W2969454153 cites W2101119909 @default.
- W2969454153 cites W2101390659 @default.
- W2969454153 cites W2110283109 @default.
- W2969454153 cites W2111246049 @default.
- W2969454153 cites W2135043619 @default.
- W2969454153 cites W2166347079 @default.
- W2969454153 cites W2169681319 @default.
- W2969454153 cites W2218641061 @default.
- W2969454153 cites W2238929664 @default.
- W2969454153 cites W2272351350 @default.
- W2969454153 cites W2291848304 @default.
- W2969454153 cites W2317879529 @default.
- W2969454153 cites W2371595 @default.
- W2969454153 cites W2496290860 @default.
- W2969454153 cites W2530979053 @default.
- W2969454153 cites W2741849502 @default.
- W2969454153 cites W2792089754 @default.
- W2969454153 cites W2793376154 @default.
- W2969454153 cites W2793643991 @default.
- W2969454153 cites W2804629952 @default.
- W2969454153 cites W2888408936 @default.
- W2969454153 cites W2963054932 @default.
- W2969454153 cites W30621018 @default.
- W2969454153 cites W3101359108 @default.
- W2969454153 cites W314635929 @default.
- W2969454153 cites W3151369355 @default.
- W2969454153 doi "https://doi.org/10.1007/s10772-019-09623-8" @default.
- W2969454153 hasPublicationYear "2019" @default.
- W2969454153 type Work @default.
- W2969454153 sameAs 2969454153 @default.
- W2969454153 citedByCount "3" @default.
- W2969454153 countsByYear W29694541532020 @default.
- W2969454153 countsByYear W29694541532022 @default.
- W2969454153 crossrefType "journal-article" @default.
- W2969454153 hasAuthorship W2969454153A5002204703 @default.
- W2969454153 hasAuthorship W2969454153A5003244142 @default.
- W2969454153 hasAuthorship W2969454153A5066533839 @default.
- W2969454153 hasBestOaLocation W29694541532 @default.
- W2969454153 hasConcept C103278499 @default.
- W2969454153 hasConcept C105795698 @default.
- W2969454153 hasConcept C112933361 @default.
- W2969454153 hasConcept C115961682 @default.
- W2969454153 hasConcept C124101348 @default.
- W2969454153 hasConcept C130318100 @default.
- W2969454153 hasConcept C138885662 @default.
- W2969454153 hasConcept C153180895 @default.
- W2969454153 hasConcept C154945302 @default.
- W2969454153 hasConcept C170133592 @default.
- W2969454153 hasConcept C178790620 @default.
- W2969454153 hasConcept C185592680 @default.
- W2969454153 hasConcept C203519979 @default.
- W2969454153 hasConcept C2776401178 @default.
- W2969454153 hasConcept C2779227376 @default.
- W2969454153 hasConcept C2781122975 @default.
- W2969454153 hasConcept C33923547 @default.
- W2969454153 hasConcept C41008148 @default.
- W2969454153 hasConcept C41895202 @default.
- W2969454153 hasConcept C52622490 @default.
- W2969454153 hasConcept C53811970 @default.
- W2969454153 hasConcept C83665646 @default.
- W2969454153 hasConceptScore W2969454153C103278499 @default.
- W2969454153 hasConceptScore W2969454153C105795698 @default.
- W2969454153 hasConceptScore W2969454153C112933361 @default.
- W2969454153 hasConceptScore W2969454153C115961682 @default.
- W2969454153 hasConceptScore W2969454153C124101348 @default.
- W2969454153 hasConceptScore W2969454153C130318100 @default.
- W2969454153 hasConceptScore W2969454153C138885662 @default.
- W2969454153 hasConceptScore W2969454153C153180895 @default.
- W2969454153 hasConceptScore W2969454153C154945302 @default.
- W2969454153 hasConceptScore W2969454153C170133592 @default.
- W2969454153 hasConceptScore W2969454153C178790620 @default.
- W2969454153 hasConceptScore W2969454153C185592680 @default.
- W2969454153 hasConceptScore W2969454153C203519979 @default.
- W2969454153 hasConceptScore W2969454153C2776401178 @default.
- W2969454153 hasConceptScore W2969454153C2779227376 @default.
- W2969454153 hasConceptScore W2969454153C2781122975 @default.